Kužel S2V

Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2.

Vypočítejte objem tohoto kužele.

Správný výsledek:

V =  881,1 dm3

Řešení:

A=126 π180=126 3.14161802.1991 rad S=415 dm2  S=πs2 A/(2π)  s=2 S/A=2 415/2.199119.4274 dm r=A s/(2π)=2.1991 19.4274/(2 3.1416)6.7996 dm h=s2r2=19.427426.7996218.1986 dm  V=13 π r2 h=13 3.1416 6.79962 18.1986=881.1 dm3



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 3 komentáře:
#
Žák
not bad

#
Žák
Správně má být: s = sqrt (2*S/A)

#
Dr Math
dekujeme, mate recht (pravdu) ;)

avatar









Tipy na související online kalkulačky
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Urči poloměr
    plast_kuzel Urči poloměr podstavy kužele, jestliže jeho plášť se rozvine v kruhovou výseč s poloměrem „s"=10 a středovým úhlem x=60°. r=?, o=?
  • Kruhová výseč
    vysec Kruhová výseč se středovým úhlem 140° má obsah 50 cm2. Určete její poloměr r.
  • Výsek a kužel
    kuzel Vypočítejte objem rotačního kužele, jehož pláštěm je kruhová výseč s poloměrem 15 cm a středovým úhlem 63 stupňů.
  • Plášť 8
    kuzel2 Plášť kužele je vytvořen svinutím kruhové úseče o poloměru 1. Pro jaký středový úhel dané kruhové výseče bude objem vzniklého kužele maximální?
  • Osový řez
    cone2 Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.
  • Plášť 9
    kuzel_rs Plášť kužele je 62,8cm2. Vypočítej stranu a výšku tohoto kužele je-li průměr podstavy 8 cm.
  • Výseč
    arc_cut Vypočítej obsah kruhové výseče v m2, pokud průměr je 290 dm a středový úhel je 135°. Výsledek zaokrouhlí na 3 desetinná místa.
  • Výseč II
    vzorec délka oblouku = 17cm obsah kruhové výseče = 55 cm2 úhel kruhové výseče = ? poloměr kruhové výseče = ?
  • Krychle 47
    cube_shield_1 Krychle má povrch 486 dm2. Vypočtěte délku její strany, její objem, délku tělesové a stěnové úhlopříčky.
  • Podstava 4b hranolu
    hranol4b_1 Pravidelný čtyřboký hranol má povrch 250 dm2, jeho plášť má obsah 200 dm2. Vypočítejte jeho podstavnou hranu.
  • Kužel
    cone_5 Obsah pláště kužele je 4 cm2, obsah podstavy kužele je 2 cm2. Určete v stupních úhel (odchylku) strany kužele a roviny podstavy kužele. (Strana kužele je úsečka spojující vrchol kužele s libovolným bodem kružnice podstavy. Všechny strany kužele tvoří pl
  • Kruhová výseč 2
    vysek Vypočítejte obsah kruhové výseče dané úhlem 220 stupňů, je li poloměr kruhu 20cm. Výsledek zaokrouhlete na cm2
  • Kužel - objem , povrch
    kuzel_rs Objem rotačního kužele je 1 018,87 dm3, jeho výška je 120 cm. Jaký je povrch kužele?
  • Jehlan 6
    komoly Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=?
  • Válce - těžkí
    cylinders Vypočítej výšku válce, když r = 10 mm a S= 800 mm2. Vypočítej poloměr/r/ válce, když výška je 20 mm a S= 1000 mm2.
  • Vypočítej 71
    kuzel Vypočítej objem a povrch kužele s průměrem podstavy 10 dm a stranou kužele 13 dm.
  • Vypočítejte 17
    kuzel2 Vypočítejte plášt kužele o průměru podstavy 40cm a výšce kužele 50cm.