Diagonal of Square Problems - page 12 of 17
Number of problems found: 338
- Prism - box
The prism's base is a rectangle with a side of 7.5 cm and 12.5 cm diagonal. The volume of the prism is V = 0.9 dm³. Calculate the surface of the prism.
- Forces
In point, G acts three orthogonal forces: F1 = 16 N, F2 = 7 N, and F3 = 6 N. Determine the resultant of F and the angles between F and forces F1, F2, and F3.
- Pine wood
We cut a carved beam from a pine trunk 6 m long and 35 cm in diameter. The beam's cross-section is in the shape of a square, which has the greatest area. Calculate the length of the sides of a square. Calculate the volume of lumber in cubic meters.
- Tetrahedral pyramid
Calculate the regular tetrahedral pyramid's volume and surface if the area of the base is 20 cm² and the deviation angle of the side edges from the plane of the base is 60 degrees.
- Distance of points
A regular quadrilateral pyramid ABCDV is given, in which edge AB = a = 4 cm and height v = 8 cm. Let S be the center of the CV. Find the distance of points A and S.
- Diagonals 3580
Cube edge length 5cm. Draw different diagonals.
- Prism + rhomboid
The prism-shaped vessel with a rhomboid base has one base diagonal of 10 cm and the edge of the base 14 cm. The edge of the base and the prism height are in a ratio of 2:5. How many liters of water is in the container when it is filled to four-fifths of t
- 10-centimeter-high 7638
A block with a square base is inserted into a 10-centimeter-high cylinder in such a way that its base is inscribed in the base of the cylinder. The edge of the base of the block measures 4 cm. Both bodies have the same height. Calculate the difference bet
- Calculate 2548
Calculate the volume of a wooden box in the shape of a prism with the base of a rectangle if the box's width is 8 dm, the length is 14 dm, and the size of the body diagonal is 25 dm.
- Last storm - tree
Mr. Radomír had a misfortune during the last storm; a tree fell on his roof in the shape of a regular four-sided pyramid and destroyed it all. The roof has a base edge length of 8m and a side edge length of 15m. How many m² of roofing will he have to buy?
- Regular square prism
The volume of a regular square prism is 192 cm³. The size of its base edge and the body height is 1:3. Calculate the surface of the prism.
- Axial section
The axial section of the cylinder is diagonal 45 cm long, and we know that the area of the side and the base area are in ratio 6:5. Calculate the height and radius of the cylinder base.
- Support colum
Calculate the support column's volume and surface. It is shaped as a vertical quadrangular prism whose base is a rhombus with diagonals u1 = 102 cm and u2 = 64 cm. The column height is 1. 5m.
- Flowerbed
The flowerbed has the shape of a truncated pyramid. The bottom edge of the base a = 10 m, and the upper base b = 9 m. The deviation angle between the edge and the base is alpha = 45°. What volume is needed to make this flowerbed? How many plants can be pl
- Horizontally 8187
We turn the prism-shaped box with a height of 1 m and a square base with an edge of 0.6 m under a force of 350 N, which acts horizontally compared to the upper edge. What is the weight of the box?
- Calculate 4842
The area of the rotating cylinder shell is half the area of its surface. Calculate the surface of the cylinder if you know that the diagonal of the axial section is 5 cm.
- Cuboid
Cuboid with edge a=6 cm and space diagonal u=31 cm has volume V=900 cm³. Calculate the length of the other edges.
- Quadrilateral pyramid
The regular quadrilateral pyramid has a base edge a = 1.56 dm and a height h = 2.05 dm. Calculate: a) the deviation angle of the sidewall plane from the base plane b) deviation angle of the side edge from the plane of the base
- Angle of diagonal
The angle between the body diagonal of a regular quadrilateral and its base is 60°. The edge of the base has a length of 10cm. Calculate the body volume.
- Surface area of the top
A cylinder is three times as high as it is wide. The length of the cylinder diagonal is 20 cm. Find the exact surface area of the top of the cylinder.
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.