Fraction Calculator



This fraction calculator performs all fraction operations - addition, subtraction, multiplication, and division — and evaluates expressions with fractions. Each calculation includes detailed step-by-step explanations.

The result:

15 6/25 - 11 5/10 = 187/50 = 3 37/50 = 3.74

Spelled out: one hundred eighty-seven fiftieths (or three and thirty-seven fiftieths).

How do we solve fractions step by step?

  1. Conversion a mixed number 15 6/25 to a improper fraction: 15 6/25 = 15 6/25 = 15 · 25 + 6/25 = 375 + 6/25 = 381/25

    To find a new numerator:
    a) Multiply the whole number 15 by the denominator 25. Whole number 15 equally 15 * 25/25 = 375/25
    b) Add the answer from the previous step 375 to the numerator 6. New numerator is 375 + 6 = 381
    c) Write a previous answer (new numerator 381) over the denominator 25.

    Fifteen and six twenty-fifths is three hundred eighty-one twenty-fifths.
  2. Conversion a mixed number 11 5/10 to a improper fraction: 11 5/10 = 11 5/10 = 11 · 10 + 5/10 = 110 + 5/10 = 115/10

    To find a new numerator:
    a) Multiply the whole number 11 by the denominator 10. Whole number 11 equally 11 * 10/10 = 110/10
    b) Add the answer from the previous step 110 to the numerator 5. New numerator is 110 + 5 = 115
    c) Write a previous answer (new numerator 115) over the denominator 10.

    Eleven and five tenths is one hundred fifteen tenths.
  3. Subtract: 381/25 - 115/10 = 381 · 2/25 · 2 - 115 · 5/10 · 5 = 762/50 - 575/50 = 762 - 575/50 = 187/50
    It is suitable to adjust both fractions to a common (equal) denominator for subtracting fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(25, 10) = 50. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 25 × 10 = 250. In the following intermediate step, it cannot further simplify the fraction result by canceling.
    In other words, three hundred eighty-one twenty-fifths minus one hundred fifteen tenths equals one hundred eighty-seven fiftieths.

Rules for expressions with fractions:

Fractions - Use a forward slash to separate the numerator and denominator. For example, for five-hundredths, enter 5/100.

Mixed numbers Leave one space between the whole number and the fraction part, and use a forward slash for the fraction. For example, enter 1 2/3 . For negative mixed numbers, write the negative sign before the whole number, such as -5 1/2.

Division of fractions - Since the forward slash is used for both fraction lines and division, use a colon (:) to divide fractions. For example, to divide 1/2 by 1/3, enter 1/2 : 1/3.

Decimals Enter decimal numbers using a decimal point (.), and they will be automatically converted to fractions. For example, enter 1.45.


Math Symbols


SymbolSymbol nameSymbol MeaningExample
+plus signaddition 1/2 + 1/3
-minus signsubtraction 1 1/2 - 2/3
*asteriskmultiplication 2/3 * 3/4
×times signmultiplication 2/3 × 5/6
:division signdivision 1/2 : 3
/division slashdivision 1/3 / 5
:coloncomplex fraction 1/2 : 1/3
^caretexponentiation / power 1/4^3
()parenthesescalculate expression inside first-3/5 - (-1/4)

Order of Operations

Ever wondered why calculators don't just work left to right? This calculator follows the mathematical order of operations — a set of rules that ensures everyone solves expressions the same way, every time.

Popular Memory Tricks

Different regions use different mnemonics to remember this order:

* PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction
* BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
* BODMAS - Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction
* GEMDAS - Grouping symbols (parentheses, brackets, braces: (){}), Exponents, Multiplication, Division, Addition, Subtraction

The Golden Rules

Rule 1: Multiplication and division always come before addition and subtraction. Think of them as the VIPs that skip to the front of the line!

Rule 2: When operations have equal priority (like × and ÷, or + and −), work from left to right—just like reading a book.

Rule 3: Parentheses change the natural order of evaluation of operations.

Last Modified: February 17, 2026