n choose k calculator n=80000, k=1000 result
Find out how many different ways you can choose k items from n items set without repetition and without order. This number is also called combination number or n choose k or binomial coefficient or simply combinations. See also general combinatorial calculator.Calculation:
Ck(n)=(kn)=k!(n−k)!n! n=80000 k=1000 C1000(80000)=(100080000)=1000!(80000−1000)!80000!≈5.785×102332
The number of combinations: 5.785657E+2332
57856575891783103324303545804983098330843121244956490
379507693910268103012907945326428171432481431676706961067652
939180852276083197213348725828746712441053308572593270491296
298355447724245077018663180632955491773743910142642912116062
177122593871649705543778747833676802867251894494862804857516
276202871813280736740773186060631376621548119733806848449300
349980966753328962082387165066318201742994889960047133932167
120799986688397969890188806906968537650634808161366446620822
821079559674146541410486791425969826422428066040220949857967
611395126789702296504929763785063357115654187554908295140349
263894259263206675801845458454590902639924369164349617192026
212004374281572507447091329481631800806059555399154675581190
227994842572598219964388437768190953817252800125226240692335
070183080645205975894433335341651676124888044028172664895149
331525799212281514573615942644886653720244006360313638668327
102989908010197679476959395692695807896327849861274427846327
477113380791003705143313466665425756833353240301469389311444
431002779328307618026848823680071674476607670520464231670577
513900772860673643070392079368167776105536839940367417118590
098637422919001604309868323082862296521420132589750231088184
556307309121314892209668771237695465022639856551332833476164
896481983986178251512343861652894208039695997528824135129999
929693786694795686199683739354728910408123670851047446900860
789379195683050988640261030760831673364812414429657983891898
872495738398944348130093823668874917467402612635471347992506
150680950554641864941561359228578179290107916922916022903463
020116313802885422429210825709778300129653402859554967793700
765148519946974380292384165580626810280068134809331876346126
518643191338009103919235516468629308519516471375499440465049
370579134012854215069666983215131135147576542436777927405040
335550621646102671967176059712374250812184869951196407009284
532594110369034507002321896660742367688583627846979007729003
013893403074182744429510408211016362228376797552891519867416
821390299159918803144099569460978965574259186285539220452456
065100030159877837407969936725219375271603372750237932390288
615252327478274847442995712670751982104918967890289540951822
317830238520833718012528964369757292414919592258868474751045
401945385911819012979691305023407271043634003597930461188440
580980390104749422340475012136955394510693704299294670434560
379507693910268103012907945326428171432481431676706961067652
939180852276083197213348725828746712441053308572593270491296
298355447724245077018663180632955491773743910142642912116062
177122593871649705543778747833676802867251894494862804857516
276202871813280736740773186060631376621548119733806848449300
349980966753328962082387165066318201742994889960047133932167
120799986688397969890188806906968537650634808161366446620822
821079559674146541410486791425969826422428066040220949857967
611395126789702296504929763785063357115654187554908295140349
263894259263206675801845458454590902639924369164349617192026
212004374281572507447091329481631800806059555399154675581190
227994842572598219964388437768190953817252800125226240692335
070183080645205975894433335341651676124888044028172664895149
331525799212281514573615942644886653720244006360313638668327
102989908010197679476959395692695807896327849861274427846327
477113380791003705143313466665425756833353240301469389311444
431002779328307618026848823680071674476607670520464231670577
513900772860673643070392079368167776105536839940367417118590
098637422919001604309868323082862296521420132589750231088184
556307309121314892209668771237695465022639856551332833476164
896481983986178251512343861652894208039695997528824135129999
929693786694795686199683739354728910408123670851047446900860
789379195683050988640261030760831673364812414429657983891898
872495738398944348130093823668874917467402612635471347992506
150680950554641864941561359228578179290107916922916022903463
020116313802885422429210825709778300129653402859554967793700
765148519946974380292384165580626810280068134809331876346126
518643191338009103919235516468629308519516471375499440465049
370579134012854215069666983215131135147576542436777927405040
335550621646102671967176059712374250812184869951196407009284
532594110369034507002321896660742367688583627846979007729003
013893403074182744429510408211016362228376797552891519867416
821390299159918803144099569460978965574259186285539220452456
065100030159877837407969936725219375271603372750237932390288
615252327478274847442995712670751982104918967890289540951822
317830238520833718012528964369757292414919592258868474751045
401945385911819012979691305023407271043634003597930461188440
580980390104749422340475012136955394510693704299294670434560
A bit of theory - the foundation of combinatorics
Combinations
A combination of a k-th class of n elements is an unordered k-element group formed from a set of n elements. The elements are not repeated, and it does not matter the order of the group's elements. In mathematics, disordered groups are called sets and subsets. Their number is a combination number and is calculated as follows:Ck(n)=(kn)=k!(n−k)!n!
A typical example of combinations is that we have 15 students and we have to choose three. How many will there be?
Foundation of combinatorics in word problems
- Win in raffle
The raffle tickets were sold to 200, 5 of which were winning. What is the probability that Peter, who bought one ticket, will win?
- MATES
In MATES (Small Television tipping), from 35 random numbers, five winning numbers are drawn. How many possible combinations are there?
- Ten dices
When you hit ten dice simultaneously, you get an average of 35. How much do you hit if every time you get six, you're throwing the dice again?
- Roll the dice
What is the probability that if we roll the dice, a number less than five falls?
- Probability 3813
Natalia went to the closet to pick out Daniel's briefs. Daniel has one piece of white briefs and one piece of black briefs in the closet. What is the probability that Natalie will take off his white briefs?
- There
There were 12 members on the commission. Five members were in favor, and seven members were against the proposal. In how many ways could it help the commission vote?
- Page numbering
The book has 88 pages. How many times is the number 4 used for the book numbering?
- Dice
We throw five times the dice. What is the probability that six fits precisely twice?
- Sweater
Dana confuses me by stating that sweaters and wool have a choice of seven colors. How many ways can she choose from three colors for the sleeves?
- PIN code
The PIN on Michael's credit card is a four-digit number. Michael told his friend: • It is a prime number - a number greater than 1, which is only divisible by the number one and by itself. • The first digit is larger than the second. • The second digit is
- Prime number
Jan wrote any number from 1 to 20. What is the probability that he wrote the prime number?
- Probability 7812
We have 20 balls in the bag, numbered from 1 to 20. Determine the spring probability that I will pull a ball with a steam number and less than 13 from the bag.
- A pizza
A pizza place offers 14 different toppings. How many different three-topping pizzas can you order?
- Classroom
Of the 26 pupils in the classroom, 12 boys and 14 girls, four representatives are picked to the odds of being: a) all the girls b) three girls and one boy c) there will be at least two boys
- Three-digit integers
How many three-digit natural numbers exist that do not contain zero and are divisible by five?
more math problems »