# Sequence 2

Write the first 5 members of an arithmetic sequence a11=-14, d=-1

Result

a1 =  -4
a2 =  -5
a3 =  -6
a4 =  -7
a5 =  -8

#### Solution:

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

## Next similar examples:

1. Sequence
Write the first 7 members of an arithmetic sequence: a1=-3, d=6.
2. Sequence
Write the first 6 members of these sequence: a1 = 5 a2 = 7 an+2 = an+1 +2 an
3. Sequence 3
Write the first 5 members of an arithmetic sequence: a4=-35, a11=-105.
4. Trees
A certain species of tree grows an average of 0.5 cm per week. Write an equation for the sequence that represents the weekly height of this tree in centimeters if the measurements begin when the tree is 200 centimeters tall.
5. AP - simple
Find the first ten members of the sequence if a11 = 132, d = 3.
6. AP - basics
Determine first member and differentiate of the the following sequence: a3-a5=24 a4-2a5=61
7. AP - simple
Determine the first nine elements of sequence if a10 = -1 and d = 4
8. 6 terms
Find the first six terms of the sequence. a1 = 7, an = an-1 + 6
9. Sequence
Between numbers 1 and 53 insert n members of the arithmetic sequence that its sum is 702.
10. AS sequence
In an arithmetic sequence is given the difference d = -3 and a71 = 455. a) Determine the value of a62 b) Determine the sum of 71 members.
11. Nineteenth member
Find the nineteenth member of the arithmetic sequence: a1=33 d=5 find a19
12. Sum of members
What is the sum of the first two members of the aritmetic progression if d = -4.3 and a3 = 7.5?
13. Seats
Seats in the sport hall are organized so that each subsequent row has five more seats. First has 10 seats. How many seats are: a) in the eighth row b) in the eighteenth row
14. Three workshops
There are 2743 people working in three workshops. In the second workshop works 140 people more than in the first and in third works 4.2 times more than the second one. How many people work in each workshop?
15. Series
Your task is express the sum of the following arithmetic series for n = 14: S(n) = 11 + 13 + 15 + 17 + ... + 2n+9 + 2n+11
16. Teams
How many ways can divide 16 players into two teams of 8 member?
17. Theorem prove
We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?