Clock

How many times a day hands on a clock overlap?

Result

n =  22

Solution:

 alpha = beta ; ;
 fraction{ 360° }{ 60} m + 360° k = fraction{ 360° }{ 12} fraction{ m}{ 60} ; ;
6° m + 360° k = 0.5° m ; ;
6m -0 = m/2; m = 2/11*0 = 0 min ==> 0:00:00
6m -360 = m/2; m = 2/11*360 = 65.45 min ==> 1:05:27
6m -720 = m/2; m = 2/11*720 = 130.91 min ==> 2:10:54
6m -1080 = m/2; m = 2/11*1080 = 196.36 min ==> 3:16:21
6m -1440 = m/2; m = 2/11*1440 = 261.82 min ==> 4:21:49
6m -1800 = m/2; m = 2/11*1800 = 327.27 min ==> 5:27:16
6m -2160 = m/2; m = 2/11*2160 = 392.73 min ==> 6:32:43
6m -2520 = m/2; m = 2/11*2520 = 458.18 min ==> 7:38:10
6m -2880 = m/2; m = 2/11*2880 = 523.64 min ==> 8:43:38
6m -3240 = m/2; m = 2/11*3240 = 589.09 min ==> 9:49:05
6m -3600 = m/2; m = 2/11*3600 = 654.55 min ==> 10:54:32
6m -3960 = m/2; m = 2/11*3960 = 720 min ==> 12:00:00
6m -4320 = m/2; m = 2/11*4320 = 785.45 min ==> 13:05:27
6m -4680 = m/2; m = 2/11*4680 = 850.91 min ==> 14:10:54
6m -5040 = m/2; m = 2/11*5040 = 916.36 min ==> 15:16:21
6m -5400 = m/2; m = 2/11*5400 = 981.82 min ==> 16:21:49
6m -5760 = m/2; m = 2/11*5760 = 1047.27 min ==> 17:27:16
6m -6120 = m/2; m = 2/11*6120 = 1112.73 min ==> 18:32:43
6m -6480 = m/2; m = 2/11*6480 = 1178.18 min ==> 19:38:10
6m -6840 = m/2; m = 2/11*6840 = 1243.64 min ==> 20:43:38
6m -7200 = m/2; m = 2/11*7200 = 1309.09 min ==> 21:49:05
6m -7560 = m/2; m = 2/11*7560 = 1374.55 min ==> 22:54:32
6m -7920 = m/2; m = 2/11*7920 = 1440 min ==> 24:00:00 !!! h>23

6m -8280 = m/2; m = 2/11*8280 = 1505.45 min ==> 25:05:27 !!! h>23



n=22








Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Do you want to convert length units? Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Do you solve Diofant problems and looking for a calculator of Diofant integer equations?

Next similar examples:

  1. Two masters
    ucitelia_komplet The two masters will make as many parts as five apprentices at the same time. An eight-hour shift begins at 6 o'clock. When can a master finish the job to produce just as much as an apprentice for the whole shift?
  2. Overtaking
    dopravni-znacka-zakaz-predjizdeni On the direct road, the passenger car overtakes the slower bus by starting to overtake 20 meters from the bus and after passing it ahead of it again 20 meters away. The car overtakes at a steady speed of 72 km/h, the bus goes at a steady speed of 54 km/h..
  3. Hectares
    tractor_8 The tractor plows the first day of 4.5ha, the second day 6.3ha and the third day 5.4ha. It worked whole hours a day, and its hourly performance did not change and was the highest of the possible. How many hectares did it plow in one hour (what is it perfor
  4. Five pupils
    lavicka_1 Five pupils clean 30 chairs one hour before four pupils. How many chairs clean one pupil in 1 hour?
  5. Logic
    blue-barrel A man drinks a barrel of water for 26 days, woman for 48 days, for how many days they drink barrel together?
  6. Car crash
    car1_7 On the road, with a maximum permitted speed of 60 km/h, there was a car crash. From the length of the vehicle's braking distance, which was 40 m, the police investigated whether the driver did not exceed that speed. What is the conclusion of the police, as
  7. Driver
    cargo_truck_4 The driver of the car at a speed of 100 km/h faced the obstacle and began to brake with a slowing of 5 m/s². What is the path to stopping the car when the driver has registered the obstacle with a delay of 0.7 s?
  8. Collision
    motion2_4 The two bodies, whose initial distance is 240 m, move evenly against each other consistently. The first body has an initial velocity of 4 m/s and an acceleration of 3 m/s2, the second body has an initial speed of 6 m/s and an acceleration of 2 m/s2. Find
  9. The tourist
    bus27_16 The tourist traveled 190km in 5 hours. Part of the journey passed at 5 km/h. The rest he went by bus at a speed of 60 km/h. How long has a bus gone?
  10. The swimmer
    river_3 The swimmer swims at a constant speed of 0.85 m/s relative to water flow. The current speed in the river is 0.40 m/s, the river width is 90 m. a) What is the resulting speed of the swimmer with respect to the tree on the riverbank when the swimmer motion
  11. Troops
    regiment Route is long 147 km and the first day first regiment went at an average speed 12 km/h and journey back 21 km/h. The second day went second regiment same route at an average speed 22 km/h there and back. Which regiment will take route longer?
  12. MO Z8-I-1 2018
    age_6 Fero and David meet daily in the elevator. One morning they found that if they multiply their current age, they get 238. If they did the same after four years, this product would be 378. Determine the sum of the current ages of Fero and David.
  13. Days2minutes
    clock-night-schr_9 Write a formula that converts x days to y minutes. The formula is:
  14. Age
    age_5 In 1960 my age was equal to the digits sum of the year of my birth. What is my age now?
  15. Two diggers
    digging Two diggers should dig a ditch. If each of them worked just one-third of the time that the other digger needs, they'd dig up a 13/18 ditch together. Find the ratio of the performance of this two diggers.
  16. Summer tires
    workers_44 Three tire servants have to change the summer tires on 6 cars in 2 hours. Mark's replacement would take 4.5 hours, Jirka would do it in 3 hours and 10 minutes, and Honza in 4 hours. Will they be able to replace all tires at the desired time?
  17. Pool
    pool If water flows into the pool by two inlets, fill the whole for 18 hours. First inlet filled pool 10 hour longer than second. How long pool is filled with two inlets separately?