Bomber

The aircraft flies at an altitude of 14700 m above the ground at a speed of 619 km/h. At what horizontal distance from point B should be released any body from the aircraft body fall into point B? (g = 9.81 m/s2)

Correct answer:

x =  9413 m

Step-by-step explanation:

v=619 km/h m/s=619:3.6  m/s=171.94444 m/s g=9.81 m/s2 h=14700 m  h = 12 g t2  t=2 hg=2 147009.8154.7443 s  x=v t=171.9444 54.7443=9413 mv = 619 \ \text{km/h} \rightarrow \ \text{m/s} = 619 : 3.6 \ \ \text{m/s} = 171.94444 \ \text{m/s} \ \\ g = 9.81 \ \text{m/s}^2 \ \\ h = 14700 \ \text{m} \ \\ \ \\ h\ = \ \dfrac{ 1 }{ 2 } \ g\ t^2 \ \\ \ \\ t = \sqrt{ \dfrac{ 2 \cdot \ h }{ g } } = \sqrt{ \dfrac{ 2 \cdot \ 14700 }{ 9.81 } } \doteq 54.7443 \ \text{s} \ \\ \ \\ x = v \cdot \ t = 171.9444 \cdot \ 54.7443 = 9413 \ \text{m}



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Do you want to convert length units?
Do you want to convert velocity (speed) units?
Do you want to convert time units like minutes to seconds?

You need to know the following knowledge to solve this word math problem:

arithmeticUnits of physical quantitiesthemes, topicsGrade of the word problem

Related math problems and questions: