Distance

What is the distance between the origin and the point (18; 22)?

Correct answer:

x =  28.43

Step-by-step explanation:

x=(180)2+(220)2=28.43



We will be pleased if You send us any improvements to this math problem. Thank you!



avatar




Tips to related online calculators
Line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions:

  • Find the 3
    segment_2 Find the distance and midpoint between A(1,2) and B(5,5).
  • Distance
    distance Calculate distance between two points X[18; 19] and W[20; 3].
  • Distance problem
    linear_eq_3 A=(x, x) B=(1,4) Distance AB=√5, find x;
  • Speed of Slovakian trains
    zssk_train Rudolf decided to take the train from the station 'Ostratice' to 'Horné Ozorovce'. In the train timetables found train Os 5409 : km 0 Chynorany 15:17 5 Ostratice 15:23 15:23 8 Rybany 15:27 15:27 10 Dolné Naštice 15:31 15:31 14 Bánovce nad Bebravou 15:35 1
  • A Cartesian framework
    .Cartesian-coordinate-system 1. In a Cartesian framework, the functions f and g we know that: the function (f) is defined by f (x) = 2x ^ 2, the function (g) is defined by g (x) = x + 3, the point (O) is the origin of the reference, point (C) is the point of intersection of the graph
  • Equation of circle
    circle_analytics find an equation of the circle with indicated properties: a. center at (-3,5), diameter 20. b. center at origin and diameter 16.
  • Equation of circle 2
    circle_axes Find the equation of a circle that touches the axis of y at a distance of 4 from the origin and cuts off an intercept of length 6 on the axis x.
  • Vertices of a right triangle
    right_triangle_5 Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle.
  • Distance between 2 points
    axes2 Find the distance between the points (7, -9), (-1, -9)
  • Distance problem 2
    geodetka_1 A=(x,2x) B=(2x,1) Distance AB=√2, find value of x
  • Vertices of RT
    RightTriangleMidpoint_3 Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.
  • Quadrilateral 2
    quadrilateral Show that the quadrilateral with vertices P1(0,1), P2(4,2) P3(3,6) P4(-5,4) has two right triangles.
  • Bearing
    compass A plane flew 50 km on a bearing 63°20' and the flew on a bearing 153°20' for 140km. Find the distance between the starting point and the ending point.
  • Pool
    pool If water flows into the pool by two inlets, fill the whole for 19 hours. The first inlet filled pool 5 hour longer than the second. How long pool take to fill with two inlets separately?
  • Segment in a triangle
    priecka In a triangle ABC with the side/AB/ = 24 cm is constructed middle segment/DE/ = 18 cm parallel to the side AB at a distance 1 cm from AB. Calculate the height of the triangle ABC to side AB.
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Right angled triangle 2
    vertex_triangle_right LMN is a right-angled triangle with vertices at L(1,3), M(3,5), and N(6,n). Given angle LMN is 90° find n