Unit circle
In the Cartesian coordinate system, a unit circle is given on which points A and B lie. Point O is the origin and has coordinates (0,0) and point B has coordinates (1,0). The size of angle BOA is 151°. Determine the x-coordinate of point A.
Correct answer:

Tips for related online calculators
See also our right triangle calculator.
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.
You need to know the following knowledge to solve this word math problem:
geometryplanimetricsgoniometry and trigonometryUnits of physical quantitiesGrade of the word problem
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Points on circle
The Cartesian coordinate system with the origin O is a sketched circle k /center O; radius r=2 cm/. Write all the points that lie on a circle k and whose coordinates are integers. Write all the points on the circle I with center O and radius r=5 cm, whose
- X-coordinate 81737
In triangle ABC, determine the coordinates of point B if you know that points A and B lie on the line 3x-y-5=0, points A and C lie on line 2x+3y+4=0, point C lies on the x-coordinate axis, and the angle at vertex C is right.
- Direction vector
The line p is given by the point P [- 0,5; 1] and the direction vector s = (1,5; - 3) determines: A) value of parameter t for points X [- 1,5; 3], Y [1; - 2] lines p B) whether the points R [0,5; - 1], S [1,5; 3] lie on the line p C) parametric equations
- Coordinates 59863
The endpoint of the vector, which is located at the origin of the Cartesian system Oxy, is given. Determine the coordinates of the vector and its magnitude, and sketch it: P[3,4]; Q[-2,7]; S[-5,-2] . .. i.e., Vectors PO, QO, SO
- Intersection 3486
The rectangular coordinate system has a point A [-2; -4] and a point S [0; -2]. Determine the coordinates of points B, C, and D so that ABCD is a square and S is the intersection of their diagonals.
- A Cartesian framework
1. In a Cartesian framework, the functions f and g we know that: The function (f) is defined by f (x) = 2x², the function (g) is defined by g (x) = x + 3, the point (O) is the origin of the reference, and point (C) is the point of intersection of the grap
- Coordinates of line points
I have a point A=[2,1] and a line y+x-5=0. How do I determine the coordinates of point A', which is the image of point A according to the given straight line?