Sick days

In Canada, there are typically 261 working days per year. If there is a 4.9% chance that an employee takes a sick day. ..
what is the probability an employee will use 17 OR MORE sick days in a year?

Result

p =  0.093

Solution:

q=4.9%=4.9100=0.049 n=261  C0(261)=(2610)=261!0!(2610)!=11=1  p0=(2610) q0 (1q)n0=1 0.0490 (10.049)26100 C1(261)=(2611)=261!1!(2611)!=2611=261  p1=(2611) q1 (1q)n1=261 0.0491 (10.049)26110 C2(261)=(2612)=261!2!(2612)!=26126021=33930  p2=(2612) q2 (1q)n2=33930 0.0492 (10.049)26120.0002 C3(261)=(2613)=261!3!(2613)!=261260259321=2929290  p3=(2613) q3 (1q)n3=2929290 0.0493 (10.049)26130.0008 C4(261)=(2614)=261!4!(2614)!=2612602592584321=188939205  p4=(2614) q4 (1q)n4=188939205 0.0494 (10.049)26140.0027 C5(261)=(2615)=261!5!(2615)!=26126025925825754321=9711475137  p5=(2615) q5 (1q)n5=9711475137 0.0495 (10.049)26150.0071 C6(261)=(2616)=261!6!(2616)!=261260259258257256654321=414356272512  p6=(2616) q6 (1q)n6=414356272512 0.0496 (10.049)26160.0157 C7(261)=(2617)=261!7!(2617)!=2612602592582572562557654321=15094407070080  p7=(2617) q7 (1q)n7=15094407070080 0.0497 (10.049)26170.0294 C8(261)=(2618)=261!8!(2618)!=26126025925825725625525487654321=479247424475040  p8=(2618) q8 (1q)n8=479247424475040 0.0498 (10.049)26180.0481 C9(261)=(2619)=261!9!(2619)!=261260259258257256255254253987654321=13472177599131680  p9=(2619) q9 (1q)n9=13472177599131680 0.0499 (10.049)26190.0696 C10(261)=(26110)=261!10!(26110)!=339498875498118336  p10=(26110) q10 (1q)n10=339498875498118336 0.04910 (10.049)261100.0904 C11(261)=(26111)=261!11!(26111)!=7746747068184336576  p11=(26111) q11 (1q)n11=7746747068184336576 0.04911 (10.049)261110.1063 C12(261)=(26112)=261!12!(26112)!1.613×1020=161390563920507012000  p12=(26112) q12 (1q)n12=161390563920507012000 0.04912 (10.049)261120.1141 C13(261)=(26113)=261!13!(26113)!3.091×1021=3091250032015865076000  p13=(26113) q13 (1q)n13=3091250032015865076000 0.04913 (10.049)261130.1126 C14(261)=(26114)=261!14!(26114)!5.475×1022=54759286281423895632000  p14=(26114) q14 (1q)n14=54759286281423895632000 0.04914 (10.049)261140.1028 C15(261)=(26115)=261!15!(26115)!9.017×1023=901702914100780148073600  p15=(26115) q15 (1q)n15=901702914100780148073600 0.04915 (10.049)261150.0872 C16(261)=(26116)=261!16!(26116)!1.386×1025=13863682304299494776631600  p16=(26116) q16 (1q)n16=13863682304299494776631600 0.04916 (10.049)261160.0691 C17(261)=(26117)=261!17!(26117)!1.998×1026=199800127326669189427926000  p17=(26117) q17 (1q)n17=199800127326669189427926000 0.04917 (10.049)261170.0513  s=p0+p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14+p15+p16+p17=0+0+0.0002+0.0008+0.0027+0.0071+0.0157+0.0294+0.0481+0.0696+0.0904+0.1063+0.1141+0.1126+0.1028+0.0872+0.0691+0.05130.9071 p=1s=10.90710.09290.093q=4.9 \%=\dfrac{ 4.9 }{ 100 }=0.049 \ \\ n=261 \ \\ \ \\ C_{{ 0}}(261)=\dbinom{ 261}{ 0}=\dfrac{ 261! }{ 0!(261-0)!}=\dfrac{ 1 } { 1 }=1 \ \\ \ \\ p_{0}={ { 261 } \choose 0 } \cdot \ q^{ 0 } \cdot \ (1-q)^{ n-0 }=1 \cdot \ 0.049^{ 0 } \cdot \ (1-0.049)^{ 261-0 } \doteq 0 \ \\ C_{{ 1}}(261)=\dbinom{ 261}{ 1}=\dfrac{ 261! }{ 1!(261-1)!}=\dfrac{ 261 } { 1 }=261 \ \\ \ \\ p_{1}={ { 261 } \choose 1 } \cdot \ q^{ 1 } \cdot \ (1-q)^{ n-1 }=261 \cdot \ 0.049^{ 1 } \cdot \ (1-0.049)^{ 261-1 } \doteq 0 \ \\ C_{{ 2}}(261)=\dbinom{ 261}{ 2}=\dfrac{ 261! }{ 2!(261-2)!}=\dfrac{ 261 \cdot 260 } { 2 \cdot 1 }=33930 \ \\ \ \\ p_{2}={ { 261 } \choose 2 } \cdot \ q^{ 2 } \cdot \ (1-q)^{ n-2 }=33930 \cdot \ 0.049^{ 2 } \cdot \ (1-0.049)^{ 261-2 } \doteq 0.0002 \ \\ C_{{ 3}}(261)=\dbinom{ 261}{ 3}=\dfrac{ 261! }{ 3!(261-3)!}=\dfrac{ 261 \cdot 260 \cdot 259 } { 3 \cdot 2 \cdot 1 }=2929290 \ \\ \ \\ p_{3}={ { 261 } \choose 3 } \cdot \ q^{ 3 } \cdot \ (1-q)^{ n-3 }=2929290 \cdot \ 0.049^{ 3 } \cdot \ (1-0.049)^{ 261-3 } \doteq 0.0008 \ \\ C_{{ 4}}(261)=\dbinom{ 261}{ 4}=\dfrac{ 261! }{ 4!(261-4)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 } { 4 \cdot 3 \cdot 2 \cdot 1 }=188939205 \ \\ \ \\ p_{4}={ { 261 } \choose 4 } \cdot \ q^{ 4 } \cdot \ (1-q)^{ n-4 }=188939205 \cdot \ 0.049^{ 4 } \cdot \ (1-0.049)^{ 261-4 } \doteq 0.0027 \ \\ C_{{ 5}}(261)=\dbinom{ 261}{ 5}=\dfrac{ 261! }{ 5!(261-5)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 } { 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=9711475137 \ \\ \ \\ p_{5}={ { 261 } \choose 5 } \cdot \ q^{ 5 } \cdot \ (1-q)^{ n-5 }=9711475137 \cdot \ 0.049^{ 5 } \cdot \ (1-0.049)^{ 261-5 } \doteq 0.0071 \ \\ C_{{ 6}}(261)=\dbinom{ 261}{ 6}=\dfrac{ 261! }{ 6!(261-6)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 } { 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=414356272512 \ \\ \ \\ p_{6}={ { 261 } \choose 6 } \cdot \ q^{ 6 } \cdot \ (1-q)^{ n-6 }=414356272512 \cdot \ 0.049^{ 6 } \cdot \ (1-0.049)^{ 261-6 } \doteq 0.0157 \ \\ C_{{ 7}}(261)=\dbinom{ 261}{ 7}=\dfrac{ 261! }{ 7!(261-7)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 \cdot 255 } { 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=15094407070080 \ \\ \ \\ p_{7}={ { 261 } \choose 7 } \cdot \ q^{ 7 } \cdot \ (1-q)^{ n-7 }=15094407070080 \cdot \ 0.049^{ 7 } \cdot \ (1-0.049)^{ 261-7 } \doteq 0.0294 \ \\ C_{{ 8}}(261)=\dbinom{ 261}{ 8}=\dfrac{ 261! }{ 8!(261-8)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 \cdot 255 \cdot 254 } { 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=479247424475040 \ \\ \ \\ p_{8}={ { 261 } \choose 8 } \cdot \ q^{ 8 } \cdot \ (1-q)^{ n-8 }=479247424475040 \cdot \ 0.049^{ 8 } \cdot \ (1-0.049)^{ 261-8 } \doteq 0.0481 \ \\ C_{{ 9}}(261)=\dbinom{ 261}{ 9}=\dfrac{ 261! }{ 9!(261-9)!}=\dfrac{ 261 \cdot 260 \cdot 259 \cdot 258 \cdot 257 \cdot 256 \cdot 255 \cdot 254 \cdot 253 } { 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 }=13472177599131680 \ \\ \ \\ p_{9}={ { 261 } \choose 9 } \cdot \ q^{ 9 } \cdot \ (1-q)^{ n-9 }=13472177599131680 \cdot \ 0.049^{ 9 } \cdot \ (1-0.049)^{ 261-9 } \doteq 0.0696 \ \\ C_{{ 10}}(261)=\dbinom{ 261}{ 10}=\dfrac{ 261! }{ 10!(261-10)!}=339498875498118336 \ \\ \ \\ p_{10}={ { 261 } \choose 10 } \cdot \ q^{ 10 } \cdot \ (1-q)^{ n-10 }=339498875498118336 \cdot \ 0.049^{ 10 } \cdot \ (1-0.049)^{ 261-10 } \doteq 0.0904 \ \\ C_{{ 11}}(261)=\dbinom{ 261}{ 11}=\dfrac{ 261! }{ 11!(261-11)!}=7746747068184336576 \ \\ \ \\ p_{11}={ { 261 } \choose 11 } \cdot \ q^{ 11 } \cdot \ (1-q)^{ n-11 }=7746747068184336576 \cdot \ 0.049^{ 11 } \cdot \ (1-0.049)^{ 261-11 } \doteq 0.1063 \ \\ C_{{ 12}}(261)=\dbinom{ 261}{ 12}=\dfrac{ 261! }{ 12!(261-12)!} \approx 1.613\times 10^{ 20 }=161390563920507012000 \ \\ \ \\ p_{12}={ { 261 } \choose 12 } \cdot \ q^{ 12 } \cdot \ (1-q)^{ n-12 }=161390563920507012000 \cdot \ 0.049^{ 12 } \cdot \ (1-0.049)^{ 261-12 } \doteq 0.1141 \ \\ C_{{ 13}}(261)=\dbinom{ 261}{ 13}=\dfrac{ 261! }{ 13!(261-13)!} \approx 3.091\times 10^{ 21 }=3091250032015865076000 \ \\ \ \\ p_{13}={ { 261 } \choose 13 } \cdot \ q^{ 13 } \cdot \ (1-q)^{ n-13 }=3091250032015865076000 \cdot \ 0.049^{ 13 } \cdot \ (1-0.049)^{ 261-13 } \doteq 0.1126 \ \\ C_{{ 14}}(261)=\dbinom{ 261}{ 14}=\dfrac{ 261! }{ 14!(261-14)!} \approx 5.475\times 10^{ 22 }=54759286281423895632000 \ \\ \ \\ p_{14}={ { 261 } \choose 14 } \cdot \ q^{ 14 } \cdot \ (1-q)^{ n-14 }=54759286281423895632000 \cdot \ 0.049^{ 14 } \cdot \ (1-0.049)^{ 261-14 } \doteq 0.1028 \ \\ C_{{ 15}}(261)=\dbinom{ 261}{ 15}=\dfrac{ 261! }{ 15!(261-15)!} \approx 9.017\times 10^{ 23 }=901702914100780148073600 \ \\ \ \\ p_{15}={ { 261 } \choose 15 } \cdot \ q^{ 15 } \cdot \ (1-q)^{ n-15 }=901702914100780148073600 \cdot \ 0.049^{ 15 } \cdot \ (1-0.049)^{ 261-15 } \doteq 0.0872 \ \\ C_{{ 16}}(261)=\dbinom{ 261}{ 16}=\dfrac{ 261! }{ 16!(261-16)!} \approx 1.386\times 10^{ 25 }=13863682304299494776631600 \ \\ \ \\ p_{16}={ { 261 } \choose 16 } \cdot \ q^{ 16 } \cdot \ (1-q)^{ n-16 }=13863682304299494776631600 \cdot \ 0.049^{ 16 } \cdot \ (1-0.049)^{ 261-16 } \doteq 0.0691 \ \\ C_{{ 17}}(261)=\dbinom{ 261}{ 17}=\dfrac{ 261! }{ 17!(261-17)!} \approx 1.998\times 10^{ 26 }=199800127326669189427926000 \ \\ \ \\ p_{17}={ { 261 } \choose 17 } \cdot \ q^{ 17 } \cdot \ (1-q)^{ n-17 }=199800127326669189427926000 \cdot \ 0.049^{ 17 } \cdot \ (1-0.049)^{ 261-17 } \doteq 0.0513 \ \\ \ \\ s=p_{0}+ p_{1}+ p_{2}+ p_{3}+ p_{4}+ p_{5}+ p_{6}+ p_{7}+ p_{8}+ p_{9}+ p_{10}+ p_{11}+ p_{12}+ p_{13}+ p_{14}+ p_{15}+ p_{16}+ p_{17}=0+ 0+ 0.0002+ 0.0008+ 0.0027+ 0.0071+ 0.0157+ 0.0294+ 0.0481+ 0.0696+ 0.0904+ 0.1063+ 0.1141+ 0.1126+ 0.1028+ 0.0872+ 0.0691+ 0.0513 \doteq 0.9071 \ \\ p=1-s=1-0.9071 \doteq 0.0929 \doteq 0.093



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Looking for a statistical calculator?
Our percentage calculator will help you quickly calculate various typical tasks with percentages.
Would you like to compute count of combinations?

Next similar math problems:

  1. Component fail
    matica There is a 90 percent chance that a particular type of component will perform adequately under high temperature conditions. If the device involved has four such components, determine the probability that the device is inoperable because exactly one of the
  2. Family
    family_32 94 boys are born per 100 girls. Determine the probability that there are two boys in a randomly selected family with three children.
  3. Trinity
    trojka How many different triads can be selected from the group 43 students?
  4. Fish tank
    zebra_fish A fish tank at a pet store has 8 zebra fish. In how many different ways can George choose 2 zebra fish to buy?
  5. Internet anywhere
    normal_d_4 In school, 60% of pupils have access to the internet at home. A group of 8 students is chosen at random. Find the probability that a) exactly 5 have access to the internet. b) At least 6 students have access to the internet
  6. Probability of malaria
    malaria A survey carried out at a certain hospital indicates that the probability that a patient tested positive for malaria is 0.6. What is the probability that two patients selected at random (i) one is negative while the other tested positive? (i) both patie
  7. One green
    gulicky In the container are 45 white and 15 balls. We randomly select 5 balls. What is the probability that it will be a maximum one green?
  8. Genetic disease
    flu One genetic disease was tested positive in both parents of one family. It has been known that any child in this family has a 25% risk of inheriting the disease. A family has 3 children. What is the probability of this family having one child who inherited
  9. Cards
    cards_4 The player gets 8 cards of 32. What is the probability that it gets a) all 4 aces b) at least 1 ace
  10. Sales
    tesco From statistics of sales goods, item A buy 51% of people and item B buys 59% of people. What is the probability that from 10 people buy 2 item A and 8 item B?
  11. Records
    binomial_1 Records indicate 90% error-free. If 8 records are randomly selected, what is the probability that at least 2 records have no errors?
  12. travel agency
    nevesta Small travel agency offers 5 different tours at honeymoon. What is the probability that the bride and groom choose the same tour (they choose independently)?
  13. Test
    test_4 The teacher prepared a test with ten questions. The student has the option to choose one correct answer from the four (A, B, C, D). The student did not get a written exam at all. What is the probability that: a) He answers half correctly. b) He answers
  14. Dice
    dices2_5 We throw 10 times a play dice, what is the probability that the six will fall exactly 4 times?
  15. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  16. Calculation of CN
    color_combinations Calculate: ?
  17. Researchers
    house Researchers ask 200 families whether or not they were the homeowner and how many cars they had. Their response was homeowner: 14 no car or one car, two or more cars 86, not homeowner: 38 no car or one car, two or more cars 62. What percent of the families