Friends

Some friends had to collect the sum 72 EUR equally. If the three refused their part, others would have to give each 4 euros more. How many are friends?

Correct result:

n =  9

Solution:

n=1 e=72(n-3).(e+4)=-152
n=2 e=36(n-3).(e+4)=-40
n=3 e=24(n-3).(e+4)=0
n=4 e=18(n-3).(e+4)=22
n=5 e=14.4(n-3).(e+4)=36.8
n=6 e=12(n-3).(e+4)=48
n=7 e=10.2857142857(n-3).(e+4)=57.1428571429
n=8 e=9(n-3).(e+4)=65
n=9 ****e=8(n-3).(e+4)=72
n=10 e=7.2(n-3).(e+4)=78.4
n=11 e=6.54545454545(n-3).(e+4)=84.3636363636
n=12 e=6(n-3).(e+4)=90
n=13 e=5.53846153846(n-3).(e+4)=95.3846153846
n=14 e=5.14285714286(n-3).(e+4)=100.571428571
n=15 e=4.8(n-3).(e+4)=105.6
n=16 e=4.5(n-3).(e+4)=110.5
n=17 e=4.23529411765(n-3).(e+4)=115.294117647
n=18 e=4(n-3).(e+4)=120
n=19 e=3.78947368421(n-3).(e+4)=124.631578947
n=20 e=3.6(n-3).(e+4)=129.2
n=21 e=3.42857142857(n-3).(e+4)=133.714285714
n=22 e=3.27272727273(n-3).(e+4)=138.181818182
n=23 e=3.13043478261(n-3).(e+4)=142.608695652
n=24 e=3(n-3).(e+4)=147
n=25 e=2.88(n-3).(e+4)=151.36
n=26 e=2.76923076923(n-3).(e+4)=155.692307692
n=27 e=2.66666666667(n-3).(e+4)=160
n=28 e=2.57142857143(n-3).(e+4)=164.285714286
n=29 e=2.48275862069(n-3).(e+4)=168.551724138
n=30 e=2.4(n-3).(e+4)=172.8
n=31 e=2.32258064516(n-3).(e+4)=177.032258065
n=32 e=2.25(n-3).(e+4)=181.25
n=33 e=2.18181818182(n-3).(e+4)=185.454545455
n=34 e=2.11764705882(n-3).(e+4)=189.647058824
n=35 e=2.05714285714(n-3).(e+4)=193.828571429
n=36 e=2(n-3).(e+4)=198
n=37 e=1.94594594595(n-3).(e+4)=202.162162162
n=38 e=1.89473684211(n-3).(e+4)=206.315789474
n=39 e=1.84615384615(n-3).(e+4)=210.461538462
n=40 e=1.8(n-3).(e+4)=214.6
n=41 e=1.75609756098(n-3).(e+4)=218.731707317
n=42 e=1.71428571429(n-3).(e+4)=222.857142857
n=43 e=1.67441860465(n-3).(e+4)=226.976744186
n=44 e=1.63636363636(n-3).(e+4)=231.090909091
n=45 e=1.6(n-3).(e+4)=235.2
n=46 e=1.5652173913(n-3).(e+4)=239.304347826
n=47 e=1.53191489362(n-3).(e+4)=243.404255319
n=48 e=1.5(n-3).(e+4)=247.5
n=49 e=1.4693877551(n-3).(e+4)=251.591836735
n=50 e=1.44(n-3).(e+4)=255.68
n=51 e=1.41176470588(n-3).(e+4)=259.764705882
n=52 e=1.38461538462(n-3).(e+4)=263.846153846
n=53 e=1.35849056604(n-3).(e+4)=267.924528302
n=54 e=1.33333333333(n-3).(e+4)=272
n=55 e=1.30909090909(n-3).(e+4)=276.072727273
n=56 e=1.28571428571(n-3).(e+4)=280.142857143
n=57 e=1.26315789474(n-3).(e+4)=284.210526316
n=58 e=1.24137931034(n-3).(e+4)=288.275862069
n=59 e=1.22033898305(n-3).(e+4)=292.338983051
n=60 e=1.2(n-3).(e+4)=296.4
n=61 e=1.18032786885(n-3).(e+4)=300.459016393
n=62 e=1.16129032258(n-3).(e+4)=304.516129032
n=63 e=1.14285714286(n-3).(e+4)=308.571428571
n=64 e=1.125(n-3).(e+4)=312.625
n=65 e=1.10769230769(n-3).(e+4)=316.676923077
n=66 e=1.09090909091(n-3).(e+4)=320.727272727
n=67 e=1.07462686567(n-3).(e+4)=324.776119403
n=68 e=1.05882352941(n-3).(e+4)=328.823529412
n=69 e=1.04347826087(n-3).(e+4)=332.869565217
n=70 e=1.02857142857(n-3).(e+4)=336.914285714
n=71 e=1.01408450704(n-3).(e+4)=340.957746479

ne=72 (n3)(e+4)=72 n=9 e=8



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?
Do you solve Diofant problems and looking for a calculator of Diofant integer equations?

Next similar math problems:

  • Discriminant
    Quadratic_equation_discriminant Determine the discriminant of the equation: ?
  • Equation
    calculator_2 Equation ? has one root x1 = 8. Determine the coefficient b and the second root x2.
  • Linsys2
    linear_eq_3 Solve two equations with two unknowns: 400x+120y=147.2 350x+200y=144
  • Solve 3
    eq2_4 Solve quadratic equation: (6n+1) (4n-1) = 3n2
  • Quadratic equation
    kvadrat_2 Find the roots of the quadratic equation: 3x2-4x + (-4) = 0.
  • Find the 20
    eq222_1 Find the product and the sum of the roots of x2 + 3x - 9 = 0
  • Variable
    eq2_12 Find variable P: PP plus P x P plus P = 160
  • The product
    eq222 The product of a number plus that number and its inverse is two and one-half. What is the inverse of this number
  • Casey
    ham Casey bought a 15.4 pound turkey and an 11.6 pound ham for thanksgiving and paid $38.51. Her friend Jane bought a 10.2 pound turkey and a 7.3 pound ham from the same store and paid $24.84. Find the cost per pound of turkey and the cost per pound of ham.
  • Ball game
    lopta_3 Richard, Denis and Denise together scored 932 goals. Denis scored 4 goals over Denise but Denis scored 24 goals less than Richard. Determine the number of goals for each player.
  • Three unknowns
    matrix_1 Solve the system of linear equations with three unknowns: A + B + C = 14 B - A - C = 4 2A - B + C = 0
  • Savings
    penize_29 Paul has a by half greater savings than half Stanley, but the same savings as Radek. Staney save 120 CZK less than Radek. What savings have 3 boys together?
  • A fisherman
    worms A fisherman buys carnivores to fish. He could buy either 6 larvae and 4 worms for $ 132 or 4 larvae and 7 worms per $ 127. What is the price of larvae and worms? Argue the answer.
  • Three workshops
    workers_24 There are 2743 people working in three workshops. In the second workshop works 140 people more than in the first and in third works 4.2 times more than the second one. How many people work in each workshop?
  • Nine books
    books_42 Nine books are to be bought by a student. Art books cost $6.00 each and biology books cost $6.50 each . If the total amount spent was $56.00, how many of each book was bought?
  • Boys and money
    money_12 270 USD boys divided so that Peter got three times more than Paul and Ivan has 120 USD more than than Paul. How much each received?
  • Stones 3
    stones Simiyu and Nasike each collected a number of stones in an arithmetic lesson. If Simiyu gave Nasike 5 stones, Nasike would have twice as many stones as Simiyu. If initially, Simiyu had five stones less than Nasike how many stones did each have?