The Earth

The Earth's surface is 510,000,000 km2. Calculates the radius, equator length, and volume of the Earth, assuming the Earth has the shape of a sphere.

Correct result:

r =  6370.5973 km
o =  40027.6436 km
V =  1.08300154807E+12 km3

Solution:

S=510000000 km2 S=4 πr2  r=S4π=5100000004 3.1416=6370.5973 km
o=2π r=2 3.1416 6370.5973=40027.6436 km
V=43 π r3=43 3.1416 6370.59733=1.083001548071012 km3=1.083002100 km3



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
Tip: Our volume units converter will help you with the conversion of volume units.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Four prisms
    hranol4b Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm2 b) 300 cm2 c) 3000 cm3 d) 300 cm3 Question No.2: The base of the prism is a rhombus with a side length of 30 cm and a height of 27 cm. The heig
  • The tent
    stan The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m2 of cloth we need to make the tent if we have to add 7% of the seams? How many m3 of air will be in the tent?
  • MO SK/CZ Z9–I–3
    ball_floating_water John had the ball that rolled into the pool and it swam in the water. Its highest point was 2 cm above the surface. Diameter of circle that marked the water level on the surface of the ball was 8 cm. Determine the diameter of John ball.
  • Chocolate roll
    chocholate_3 The cube of 5 cm chocolate roll weighs 30 g. How many calories will contain the same chocolate roller of a prism shape with a length of 0.5 m whose cross section is an isosceles trapezoid with bases 25 and 13 cm and legs 10 cm. You know that 100 g of this
  • Triangular prism,
    prism3s The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm3 (l).
  • Tent
    stan Calculate how many liters of air will fit in the tent that has a shield in the shape of an isosceles right triangle with legs r = 3 m long the height = 1.5 m and a side length d = 5 m.
  • Triangular prism
    prism3_1 The triangular prism has a base in the shape of a right triangle, the legs of which is 9 cm and 40 cm long. The height of the prism is 20 cm. What is its volume cm3? And the surface cm2?
  • Pentagonal prism
    penta-prism The regular pentagonal prism is 10 cm high. The radius of the circle of the described base is 8 cm. Calculate the volume and surface area of the prism.
  • Cone container
    kuzel_1 Rotary cone-shaped container has a volume 1000 cubic cm and a height 12 cm. Calculate how much metal we need for making this package.
  • Trench
    lichobeznik_4 The trench is a four-sided prism. The cross section has a trapezoidal shape with basements of 4m and 6m, the length of the trench is 30m. What is the depth of the trench if we dig 60,000 l of soil.
  • Diamond diagonals
    kosostvorec Calculate the diamonds' diagonals lengths if the diamond area is 156 cm square and the side length is 13 cm.
  • Triangular prism
    hranol3b The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism.
  • Cube 5
    cubes_10 The content area of one cube wall is 32 square centimeters. Determine the length of its edges, its surface and volume.
  • Cube wall
    cube_shield_2 The perimeter of one cube wall is 120 meters. Calculate the surface area and the body diagonal of this cube.
  • Minimum surface
    cuboid_20 Find the length, breadth, and height of the cuboid shaped box with a minimum surface area, into which 50 cuboid shaped blocks, each with length, breadth and height equal to 4 cm, 3 cm and 2 cm respectively can be packed.
  • Quadrangular pyramid
    pyramid_4s_1 The regular quadrangular pyramid has a base length of 6 cm and a side edge length of 9 centimeters. Calculate its volume and surface area.
  • Cube in a sphere
    cube_in_sphere_1 The cube is inscribed in a sphere with volume 7253 cm3. Determine the length of the edges of a cube.