Millimeters 25051
The juice is sold in cans with a radius of 30 mm and a height of 11 cm. There are 0.25 liters of juice in the cans. How many millimeters below the can lid is the level?
Correct answer:
Tips for related online calculators
Do you know the volume and unit volume, and want to convert volume units?
You need to know the following knowledge to solve this word math problem:
Units of physical quantities:
Grade of the word problem:
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Glass of juice
The glass of juice-shaped cylinder 16 cm height and base diameter of 9 cm is filled with juice so that the level is 1 cm below the rim of the glass. Determine the maximum angle of the cup that we can tilt so the juice doesn't overflow. - Juice box 2
The box with juice has the shape of a cuboid. Internal dimensions are 15 cm, 20 cm, and 32 cm. Suppose the box stays at the smallest base juice level and reaches 4 cm below the upper base. How much internal volume of the box fills juice? How many cm below - Measuring 45801
The aquarium has the shape of a block measuring 80 cm, 30 cm, and 20 cm. The water level reaches 6 cm below the upper edge. How many liters of water are in the aquarium? (1 liter = 1 dm3) - Dimensions 67534
Peter has an aquarium at home in the shape of a cuboid with 6 x 3 dm bottom dimensions and a height of 4 dm. They filled the aquarium with water according to the seller's order, 5 cm below the edge. A) The maximum number of fish can be raised in it if 1 f
- Cans
How many m² of metal sheet is needed to produce 20,000 cans in the shape of a cylinder with a base radius and a height of 5 cm? - Measuring 69764
You need to count 3 liters of water for one fish in the aquarium. Jaroslav has an aquarium measuring 80 cm x 50 cm with a height of 45 cm. Determine the maximum number of fish Jaroslav can keep in this aquarium if the water level reaches 5 cm below the to - Dimensions 6263
The closed petrol tank is a cuboid with dimensions of 80cm, 30cm, and 20cm. The petrol level reaches 6cm below the upper edge of the tank. Determine the amount of gasoline in the tank in liters for all possible, stable positions of the tank.