# Equilateral triangle v3

Find the area of the colored gray part. An equilateral triangle has a side length of 8 cm. Arc centers are the vertices of a triangle.

## Correct answer:

Tips for related online calculators

### You need to know the following knowledge to solve this word math problem:

### Units of physical quantities:

### Grade of the word problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Square and circles

The square in the picture has a side length of a = 20 cm. Circular arcs have centers at the vertices of the square. Calculate the areas of the colored unit. Express area using side a. - Eq triangle minus arcs

In an equilateral triangle with a 2cm long side, the arcs of three circles are drawn from the centers at the vertices and radii 1cm. Calculate the area of the shaded part - a formation that makes up the difference between the triangle area and circular cu - Equilateral 80851

Kornelia cut off the colored part from the equilateral triangle. The shortest side of the colored triangle is 1/3 the length of the side of the original triangle. Calculate what part of the triangle she cut off. - Circle section

An equilateral triangle with side 33 is an inscribed circle section whose center is in one of the triangle's vertices, and the arc touches the opposite side. Calculate: a) the length of the arc b) the ratio between the circumference to the circle sector a

- Recursion squares

In the square, ABCD has inscribed a square so that its vertices lie at the centers of the sides of the square ABCD. The procedure of inscribing the square is repeated this way. The side length of the square ABCD is a = 20 cm. Calculate: a) the sum of peri - Percentage 82623

The square in the picture has a side length of 6 cm. What percentage of the area is the colored part? - Situation 70644

How large is the area colored brown inside a square of side 6 cm if each of the four brown circular segments is from a circle with a radius of the length of the square's side? The length of the circular segments is equal to the length of the side of the s