Larger perimeter

There are a square and a circle that passes through two adjacent vertices of the square (end points of side a) and the center of the opposite side (c). Which of the plane shape has a larger perimeter?

Correct result:

x =  1

Solution:

a=1  r2=(a/2)2+(ar)2 r2=a2/4+a22ar+r2 2ar=a2/4+a2 2r=a/4+a r=a/8+a/2 r=58 a=58 1=58=0.625   o1=4 a=4 1=4 o2=2π r=2 3.1416 0.6253.927  o1>o2 x=1



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar





 
We encourage you to watch this tutorial video on this math problem: video1

Next similar math problems:

  • Circle and square
    square_axes An ABCD square with a side length of 100 mm is given. Calculate the radius of the circle that passes through the vertices B, C and the center of the side AD.
  • MO circles
    mo Juro built the ABCD square with a 12 cm side. In this square, he scattered a quarter circle that had a center at point B passing through point A and a semicircle l that had a center at the center of the BC side and passed point B. He would still build a c
  • Z9–I–1
    ctverec_mo In all nine fields of given shape to be filled natural numbers so that: • each of the numbers 2, 4, 6, and 8 is used at least once, • four of the inner square boxes containing the products of the numbers of adjacent cells of the outer square, • in the cir
  • Parallels and one secant
    lines_parallel_crossing There are two different parallel lines a, b and a line c that intersect the two parallel lines. Draw a circle that touches all lines at the same time.
  • Square
    square_1 Points A[-9,7] and B[-4,-5] are adjacent vertices of the square ABCD. Calculate the area of the square ABCD.
  • Circle section
    circle_segment Equilateral triangle with side 33 is inscribed circle section whose center is in one of the vertices of the triangle and the arc touches the opposite side. Calculate: a) the length of the arc b) the ratio betewwn the circumference to the circle sector and
  • Circle tangent
    thales_3 It is given to a circle with the center S and radius 3.5 cm. Distance from the center to line p is 6 cm. Construct a circle tangent n which is perpendicular to the line p.
  • Cylinders
    cylinders The area of the side of two cylinders is the same rectangle of 33 mm × 18 mm. Which cylinder has a larger volume and by how much?
  • Two chords
    circle_chords There is a given circle k (center S, radius r). From point A which lies on circle k are starting two chords of length r. What angle does chords make? Draw and measure.
  • Construct
    inscircle_triangle Construct a triangle ABC inscribed circle has a radius r = 2 cm, the angle alpha = 50 degrees = 8 cm. Make a sketch, analysis, construction and description.
  • Rhombus construction
    rhombus_7 Construct ABCD rhombus if its diagonal AC=9 cm and side AB = 6 cm. Inscribe a circle in it touching all sides...
  • Vertices of a right triangle
    right_triangle_5 Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle.
  • Combi-triangle
    komb_triangle On each side of the square is marked 10 different points outside the vertices of the square. How many triangles can be constructed from this set of points, where each vertex of the triangle lie on the other side of the square?
  • Construction
    taznice7 Construction the triangle ABC, if you know: the size of the side AC is 6 cm, the size of the angle ACB is 60° and the distance of the center of gravity T from the vertex A is 4 cm. (Sketch, analysis, notation of construction, construction)
  • Circles
    two_circles The areas of the two circles are in the ratio 2:20. The larger circle has a diameter 20. Calculate the radius of the smaller circle.
  • Inscribed circle
    Su55k02_m10 Write the equation of a incircle of the triangle KLM if K [2,1], L [6,4], M [6,1].
  • Square ABCD
    squares_5 Construct a square ABCD with cente S [3,2] and the side a = 4 cm. Point A lies on the x-axis. Construct square image in the displacement given by oriented segment SS'; S` [-1 - 4].