Gp - 80
Sum of the first four members of a geometric progression is 80. Determine they if we know that the fourth member is nine times greater than the second.
Correct result:
Correct result:

Showing 0 comments:
You need to know the following knowledge to solve this word math problem:
Related math problems and questions:
- Three members GP
The sum of three numbers in GP (geometric progression) is 21 and the sum of their squares is 189. Find the numbers.
- Geometric progressiob
If the sum of four consective terms of geometric progression is 80 and arithmetic mean of second and fourth term is 30 then find terms?
- GP - 8 items
Determine the first eight members of a geometric progression if a9=512, q=2
- GP - three members
The second and third of a geometric progression are 24 and 12(c+1) respectively, given that the sum of the first three terms of progression is 76 determine value of c
- Sequences AP + GP
The three numbers that make up the arithmetic sequence have the sum of 30. If we subtract from the first 5, from the second 4 and keep the third, we get the geometric sequence. Find AP and GP members.
- Fifth member
Determine the fifth member of the arithmetic progression, if the sum of the second and fifth members equal to 73, and difference d = 7.
- Sum of members
What is the sum of the first two members of the aritmetic progression if d = -4.3 and a3 = 7.5?
- If the 3
If the 6th term of a GP is 4 and the 10th is 4/81, find common ratio r.
- Geometric sequence 5
About members of geometric sequence we know: ? ? Calculate a1 (first member) and q (common ratio or q-coefficient)
- Quotient
Determine the quotient and the second member of the geometric progression where a3=10, a1+a2=-1,6 a1-a2=2,4.
- Geometric sequence 3
In geometric sequence is a8 = 312500; a11= 39062500; sn=1953124. Calculate the first item a1, quotient q and n - number of members by their sum s_n.
- QuizQ2
The square of the first number is equal to three-fifths of the second number. Determine both numbers if you know that the second number is 5 times greater than the first, and neither of numbers is not equal to zero.
- Geometric progression
In geometric progression, a1 = 7, q = 5. Find the condition for n to sum first n members is: sn≤217.
- Geometric sequence
In the geometric sequence is a4 = 20 a9 = -160. Calculate the first member a1 and quotient q.
- Five members
Write first 5 members geometric sequence and determine whether it is increasing or decreasing: a1 = 3 q = -2
- Sum of GP members
Determine the sum of the GP 30, 6, 1.2, to 5 terms. What is the sum of all terms (to infinity)?
- GP members
The geometric sequence has 10 members. The last two members are 2 and -1. Which member is -1/16?