GP - three members

The second and third of a geometric progression are 24 and 12(c+1) respectively, given that the sum of the first three terms of progression is 76 determine value of c

Result

c1 =  2
c2 =  0.333

Solution:

a2=24 a3=12(c+1)  q=a3/a2=12(c+1)/24=(c+1)/2  a1=a2/q=24 2/(c+1)=48/(c+1)  s=a1+a2+a3=76  48/(c+1)+24+12(c+1)=76   48+24(c+1)+12(c+1)2=76(c+1) 12c228c+8=0  p=12;q=28;r=8 D=q24pr=2824128=400 D>0  c1,2=q±D2p=28±40024 c1,2=28±2024 c1,2=1.16666667±0.83333333333333 c1=2 c2=0.33333333333333   Factored form of the equation:  12(c2)(c0.33333333333333)=0  c=c1=2 q=(c+1)/2=(2+1)/2=32=1.5 a1=a2/q=24/1.5=16 a3=a2 q=24 1.5=36 s2=a1+a2+a3=16+24+36=76  s2=s  c1=2a_{2}=24 \ \\ a_{3}=12(c+1) \ \\ \ \\ q=a_{3}/a_{2}=12(c+1)/24=(c+1)/2 \ \\ \ \\ a_{1}=a_{2}/q=24 \cdot \ 2/(c+1)=48/(c+1) \ \\ \ \\ s=a_{1}+a_{2}+a_{3}=76 \ \\ \ \\ 48/(c+1) + 24 + 12(c+1)=76 \ \\ \ \\ \ \\ 48 + 24(c+1) + 12(c+1)^2=76(c+1) \ \\ 12c^2 -28c +8=0 \ \\ \ \\ p=12; q=-28; r=8 \ \\ D=q^2 - 4pr=28^2 - 4\cdot 12 \cdot 8=400 \ \\ D>0 \ \\ \ \\ c_{1,2}=\dfrac{ -q \pm \sqrt{ D } }{ 2p }=\dfrac{ 28 \pm \sqrt{ 400 } }{ 24 } \ \\ c_{1,2}=\dfrac{ 28 \pm 20 }{ 24 } \ \\ c_{1,2}=1.16666667 \pm 0.83333333333333 \ \\ c_{1}=2 \ \\ c_{2}=0.33333333333333 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ 12 (c -2) (c -0.33333333333333)=0 \ \\ \ \\ c=c_{1}=2 \ \\ q=(c+1)/2=(2+1)/2=\dfrac{ 3 }{ 2 }=1.5 \ \\ a_{1}=a_{2}/q=24/1.5=16 \ \\ a_{3}=a_{2} \cdot \ q=24 \cdot \ 1.5=36 \ \\ s_{2}=a_{1}+a_{2}+a_{3}=16+24+36=76 \ \\ \ \\ s_{2}=s \ \\ \ \\ c_{1}=2

Checkout calculation with our calculator of quadratic equations.

q=(c2+1)/2=(0.3333+1)/2230.6667 a11=a2/q=24/0.6667=36 a33=a2 q=24 0.6667=16 s3=a11+a2+a33=36+24+16=76 s3=s2=s c2=0.3333=130.33330.333q=(c_{2}+1)/2=(0.3333+1)/2 \doteq \dfrac{ 2 }{ 3 } \doteq 0.6667 \ \\ a_{11}=a_{2}/q=24/0.6667=36 \ \\ a_{33}=a_{2} \cdot \ q=24 \cdot \ 0.6667=16 \ \\ s_{3}=a_{11}+a_{2}+a_{33}=36+24+16=76 \ \\ s_{3}=s_{2}=s \ \\ c_{2}=0.3333=\dfrac{ 1 }{ 3 } \doteq 0.3333 \doteq 0.333



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Next similar math problems:

  1. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  2. Geometric sequence 5
    sequence About members of geometric sequence we know: ? ? Calculate a1 (first member) and q (common ratio or q-coefficient)
  3. GP members
    sequence_geo_8 The geometric sequence has 10 members. The last two members are 2 and -1. Which member is -1/16?
  4. Geometric seq
    eq222_1 Find the third member of geometric progression if a1 + a2 = 36 and a1 + a3 = 90. Calculate its quotient.
  5. Equation
    calculator_2 Equation ? has one root x1 = 8. Determine the coefficient b and the second root x2.
  6. Geometric progression 2
    exp_x There is geometric sequence with a1=5.7 and quotient q=-2.5. Calculate a17.
  7. Six terms
    sequence_geo_3 Find the first six terms of the sequence a1 = -3, an = 2 * an-1
  8. Ball game
    lopta_3 Richard, Denis and Denise together scored 932 goals. Denis scored 4 goals over Denise but Denis scored 24 goals less than Richard. Determine the number of goals for each player.
  9. Solve 3
    eq2_4 Solve quadratic equation: (6n+1) (4n-1) = 3n2
  10. Evaluation of expressions
    eq222_10 If a2-3a+1=0, find (i)a2+1/a2 (ii) a3+1/a3
  11. Square root 2
    parabola_2 If the square root of 3m2 +22 and -x = 0, and x=7, what is m?
  12. Linsys2
    linear_eq_3 Solve two equations with two unknowns: 400x+120y=147.2 350x+200y=144
  13. Roots
    parabola Determine the quadratic equation absolute coefficient q, that the equation has a real double root and the root x calculate: ?
  14. Quadratic equation
    kvadrat_2 Find the roots of the quadratic equation: 3x2-4x + (-4) = 0.
  15. Discriminant
    Quadratic_equation_discriminant Determine the discriminant of the equation: ?
  16. Equation 23
    reciprocal_1 Find value of unknown x in equation: x+3/x+1=5 (problem finding x)
  17. Reciprocal value
    fx How do I calculate a number x that is 9 greater than its reciprocal (1/x)?