Rotating cone

Calculate the volume and the surface area of a rotating cone of base radius r = 2.3 dm and a height h = 46 mm.

Correct result:

V =  2.5483 dm3
S =  33.5672 dm2

Solution:

r=2.3 dm v=46/100=2350=0.46 dm S1=π r2=3.1416 2.3216.619 dm2 V=S1 v/3=16.619 0.46/3=2.5483 dm3
 s=r2+v2=2.32+0.4622.3455 dm S2=π r s=3.1416 2.3 2.345516.9481 dm2 S=S1+S2=16.619+16.9481=33.5672 dm2



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
Do you want to convert length units?
Do you know the volume and unit volume, and want to convert volume units?
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Here is
    calc Here is a data set (n=117) that has been sorted. 10.4 12.2 14.3 15.3 17.1 17.8 18 18.6 19.1 19.9 19.9 20.3 20.6 20.7 20.7 21.2 21.3 22 22.1 22.3 22.8 23 23 23.1 23.5 24.1 24.1 24.4 24.5 24.8 24.9 25.4 25.4 25.5 25.7 25.9 26 26.1 26.2 26.7 26.8 27.5 27.6 2
  • Tetrahedral pyramid
    jehlan_1 Calculate the volume and surface area of a regular tetrahedral pyramid, its height is $b cm and the length of the edges of the base is 6 cm.
  • Cubes
    squares_2 One cube is inscribed sphere and the other one described. Calculate difference of volumes of cubes, if the difference of surfaces in 257 mm2.
  • Hexagonal pyramid
    Hexagonal_pyramid Calculate the volume and the surface of a regular hexagonal pyramid with a base edge length of 3 cm and a height of 5 cm.
  • Hexagonal pyramid
    jehlan_6 Regular hexagonal pyramid has dimensions: length edge of the base a = 1.8 dm and the height of the pyramid = 2.4 dm. Calculate the surface area and volume of a pyramid.
  • Truncated pyramid
    komoly_jehlan The concrete pedestal in the shape of a regular quadrilateral truncated pyramid has a height of 12 cm, the pedestal edges have lengths of 2.4 and 1.6 dm. Calculate the surface of the base.
  • Pyramid a+h
    jehlan_1 Calculate the volume and surface area of the pyramid on the edge and height a = 26 cm. h = 3 dm.
  • Triangular pyramid
    tetrahedron1 Calculate the volume and surface area of a regular triangular pyramid whose height is equal to the length of the base edges 10 cm.
  • Prism 4 sides
    hranol4sreg The prism has a square base with a side length of 3 cm. The diagonal of the sidewall of the prism/BG/is 5 cm. Calculate the surface of this prism in cm square and the volume in liters
  • Prism
    3b_hranol Right angle prism, whose base is right triangle with leg a = 3 cm and hypotenuse c = 13 cm has same volume as a cube with an edge length of 3 dm. a) Determine the height of the prism b) Calculate the surface of the prism c) What percentage of the cube's s
  • Cone - from volume surface area
    kuzel_rs The volume of the rotating cone is 1,018.87 dm3, its height is 120 cm. What is the surface area of the cone?
  • Rhombus base
    paral_prism Calculate the volume and surface area of prisms whose base is a rhombus with diagonals u1 = 12 cm and u2 = 10 cm. Prism height is twice base edge length.
  • Prism - box
    cuboids_1 The base of prism is a rectangle with a side of 7.5 cm and 12.5 cm diagonal. The volume of the prism is V = 0.9 dm3. Calculate the surface of the prism.
  • The diagram 2
    cone The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 cm2. Calculate correct to 3 significant figures: *Base Radius *Height *Volume of the cone
  • Lateral surface area
    kuzel2 The ratio of the area of the base of the rotary cone to its lateral surface area is 3: 5. Calculate the surface and volume of the cone, if its height v = 4 cm.
  • Four prisms
    hranol4b Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm2 b) 300 cm2 c) 3000 cm3 d) 300 cm3 Question No.2: The base of the prism is a rhombus with a side length of 30 cm and a height of 27 cm. The heig
  • Canopy
    cone-roof Mr Peter has metal roof cone shape with a height of 127 cm and radius 130 cm over well. He needs paint the roof with anticorrosion. How many kg of color must he buy if the manufacturer specifies the consumption of 1 kg to 3.3 m2?