# Rotating cone

Calculate the volume and the surface area of a rotating cone of base radius r = 2.3 dm and a height h = 46 mm.

**Correct result:****Showing 0 comments:**

Tips to related online calculators

Do you want to convert length units?

Do you know the volume and unit volume, and want to convert volume units?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Do you know the volume and unit volume, and want to convert volume units?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Here is

Here is a data set (n=117) that has been sorted. 10.4 12.2 14.3 15.3 17.1 17.8 18 18.6 19.1 19.9 19.9 20.3 20.6 20.7 20.7 21.2 21.3 22 22.1 22.3 22.8 23 23 23.1 23.5 24.1 24.1 24.4 24.5 24.8 24.9 25.4 25.4 25.5 25.7 25.9 26 26.1 26.2 26.7 26.8 27.5 27.6 2 - Tetrahedral pyramid

Calculate the volume and surface area of a regular tetrahedral pyramid, its height is $b cm and the length of the edges of the base is 6 cm. - Cubes

One cube is inscribed sphere and the other one described. Calculate difference of volumes of cubes, if the difference of surfaces in 257 mm^{2}. - Hexagonal pyramid

Calculate the volume and the surface of a regular hexagonal pyramid with a base edge length of 3 cm and a height of 5 cm. - Hexagonal pyramid

Regular hexagonal pyramid has dimensions: length edge of the base a = 1.8 dm and the height of the pyramid = 2.4 dm. Calculate the surface area and volume of a pyramid. - Truncated pyramid

The concrete pedestal in the shape of a regular quadrilateral truncated pyramid has a height of 12 cm, the pedestal edges have lengths of 2.4 and 1.6 dm. Calculate the surface of the base. - Pyramid a+h

Calculate the volume and surface area of the pyramid on the edge and height a = 26 cm. h = 3 dm. - Triangular pyramid

Calculate the volume and surface area of a regular triangular pyramid whose height is equal to the length of the base edges 10 cm. - Prism 4 sides

The prism has a square base with a side length of 3 cm. The diagonal of the sidewall of the prism/BG/is 5 cm. Calculate the surface of this prism in cm square and the volume in liters - Prism

Right angle prism, whose base is right triangle with leg a = 3 cm and hypotenuse c = 13 cm has same volume as a cube with an edge length of 3 dm. a) Determine the height of the prism b) Calculate the surface of the prism c) What percentage of the cube's s - Cone - from volume surface area

The volume of the rotating cone is 1,018.87 dm^{3}, its height is 120 cm. What is the surface area of the cone? - Rhombus base

Calculate the volume and surface area of prisms whose base is a rhombus with diagonals u_{1}= 12 cm and u_{2}= 10 cm. Prism height is twice base edge length. - Prism - box

The base of prism is a rectangle with a side of 7.5 cm and 12.5 cm diagonal. The volume of the prism is V = 0.9 dm^{3}. Calculate the surface of the prism. - The diagram 2

The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 cm^{2}. Calculate correct to 3 significant figures: *Base Radius *Height *Volume of the cone - Lateral surface area

The ratio of the area of the base of the rotary cone to its lateral surface area is 3: 5. Calculate the surface and volume of the cone, if its height v = 4 cm. - Four prisms

Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm^{2}b) 300 cm^{2}c) 3000 cm^{3}d) 300 cm^{3}Question No.2: The base of the prism is a rhombus with a side length of 30 cm and a height of 27 cm. The heig - Canopy

Mr Peter has metal roof cone shape with a height of 127 cm and radius 130 cm over well. He needs paint the roof with anticorrosion. How many kg of color must he buy if the manufacturer specifies the consumption of 1 kg to 3.3 m^{2}?