# Church roof

The roof of the church tower has the shape of a regular tetrahedral pyramid with base edge length 5.4 meters and a height 5 m. It was found that needs to be corrected 27% covering of the roof area. What amount of material will be required?

### Correct answer:

Tips to related online calculators

Our percentage calculator will help you quickly calculate various typical tasks with percentages.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Tower

The top of the tower is a regular hexagonal pyramid with base edge 8 meters long and a height 5 meters. How many m^{2}of the sheet is required to cover the top of the tower if we count 8% of the sheet waste? - Top of the tower

The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m, the pyramid height is 1.6 m. How many square meters of sheet metal is needed to cover the top of the tower if 15% extra sheet metal is needed for joint - Roof 7

The roof has the shape of a regular quadrangular pyramid with a base edge of 12 m and a height of 4 m. How many percent is folds and waste if in construction was consumed 181.4m^{2}of plate? - Pyramid roof

2/4 of the area of the roof-shaped regular tetrahedral pyramid with base edge 10 m and height of 4 m is already covered with roofing. How many square meters still need to be covered? - The roof

The roof of the tower has the shape of a regular quadrangular pyramid, the base edge of which is 11 m long and the side wall of the animal with the base an angle of 57°. Calculate how much roofing we need to cover the entire roof, if we count on 15% waste - Roof 8

How many liters of air are under the roof of tower which has the shape of a regular six-sided pyramid with a 3,6-meter-long bottom edge and a 2,5-meter height? Calculate the supporting columns occupy about 7% of the volume under the roof. - Tetrahedral pyramid

What is the surface of a regular tetrahedral (four-sided) pyramid if the base edge a=16 and height v=16? - The bus stop

The bus stop waiting room has the shape of a regular quadrilateral pyramid 4 m high with a 5 m base edge. Calculate how much m^{2}roofing is required to cover the sheathing three walls, taking 40% of the additional coverage. - The tent

The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m^{2}of cloth we need to make the tent if we have to add 7% of the seams? How many m^{3}of air will be in the tent? - Regular quadrangular pyramid

How many square meters are needed to cover the shape of a regular quadrangular pyramid base edge 10 meters if the deviation lateral edges from the base plane are 68°? Calculate waste 10%. - The roof of the church

The cone roof of the church has a diameter of 3 m and a height of 4 m. What is the size of the side edge of the church roof (s=?) and many sheets sheet will be needed to cover the church roof? - Roof cover

Above the pavilion with a square ground plan with a side length of a = 12 m is a pyramid-shaped roof with a height v = 4.5 m. Calculate how much m^{2}of sheet metal is needed to cover this roof if 5.5% of the sheet we must add for joints and waste. - How many

How many m^{2}of copper sheet is needed to replace the roof of a conical tower with a diameter of 13 meters and a height of 24 meters, if we count 8% of the material for bending and waste? - Storm and roof

The roof on the building is a cone with a height of 3 meters and a radius equal to half the height of the roof. How many m^{2}of roof need to be repaired if 20% were damaged in a storm? - Tetrahedral pyramid

Calculate the surface S and the volume V of a regular tetrahedral pyramid with the base side a = 5 m and a body height of 14 m. - Tetrahedral pyramid

A regular tetrahedral pyramid is given. Base edge length a = 6.5 cm, side edge s = 7.5 cm. Calculate the volume and the area of its face (side area). - Tetrahedral pyramid

Calculate the volume and surface area of a regular tetrahedral pyramid, its height is $b cm and the length of the edges of the base is 6 cm.