MIT 1869

You know the length of hypotenuse parts 9 and 16, at which the hypotenuse of a right triangle is divided by a perpendicular running from its opposite vertex. The task is to find the lengths of the sides of the triangle and the length of the line x. This assignment was part of the entrance exams to the Massachusetts Institute of Technology MIT in 1869.

Correct answer:

c =  25
x =  12
a =  15
b =  20

Step-by-step explanation:

c1=9 c2=16  c=c1+c2=9+16=25
x2=c1 c2  x=c1 c2=9 16=12
a2=x2+c12 a=x2+c12=122+92=15
b2=x2+c22 b=x2+c22=122+162=20   Verifying Solution:   c3=a2+b2=152+202=25

Try calculation via our triangle calculator.




Did you find an error or inaccuracy? Feel free to write us. Thank you!






Showing 1 comment:
#
Peter
Easier solution with almost no calculating. Because all 3 entered triangles are similar, the following holds: x / 9 = 16 / x => x = 12. And because every triangle that has an aspect ratio of 3: 4: 5 is right, it must hold: a = 3 * 5 = 15 ab = 4 * 5 = 20.
PS: Maybe at that time they wanted to know at MIT who was just calculate and who was even thinking.

9 days ago  1 Like
avatar









Tips to related online calculators
Pythagorean theorem is the base for the right triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions:

  • Speed of Slovakian trains
    zssk_train Rudolf decided to take the train from the station 'Ostratice' to 'Horné Ozorovce'. In the train timetables found train Os 5409 : km 0 Chynorany 15:17 5 Ostratice 15:23 15:23 8 Rybany 15:27 15:27 10 Dolné Naštice 15:31 15:31 14 Bánovce nad Bebravou 15:35 1
  • TV diagonal
    tv_diagonal Diagonal TV is 0.56 m long, how big the television sreen is if the aspect ratio is 16:9?
  • Hypotenuse - RT
    triangle_bac A triangle has a hypotenuse of 55 and an altitude to the hypotenuse of 33. What is the area of the triangle?
  • MO - triangles
    metal On the AB and AC sides of the triangle ABC lies successive points E and F, on segment EF lie point D. The EF and BC lines are parallel and is true this ratio FD:DE = AE:EB = 2:1. The area of ABC triangle is 27 hectares and line segments EF, AD, and DB seg
  • Sides of right angled triangle
    triangle_rt1 One leg is 1 m shorter than the hypotenuse, and the second leg is 2 m shorter than the hypotenuse. Find the lengths of all sides of the right-angled triangle.
  • Isosceles triangle
    rr_triangle3 In an isosceles triangle ABC with base AB; A [3,4]; B [1,6] and the vertex C lies on the line 5x - 6y - 16 = 0. Calculate the coordinates of vertex C.
  • Trapezoid RT
    lichobeznik2 The plot has a shape of a rectangular trapezium ABCD, where ABIICD with a right angle at the vertex B. side AB has a length 36 m. The lengths of the sides AB and BC are in the ratio 12:7. Lengths of the sides AB and CD are a ratio 3:2. Calculate consumpti
  • The triangles
    triangle1 The triangles KLM and ABC are given, which are similar to each other. Calculate the lengths of the remaining sides of the triangle KLM, if the lengths of the sides are a = 7 b = 5.6 c = 4.9 k = 5
  • Rectangular triangles
    r_triangles The lengths of corresponding sides of two rectangular triangles are in the ratio 2:5. At what ratio are medians relevant to hypotenuse these right triangles? At what ratio are the contents of these triangles? Smaller rectangular triangle has legs 6 and 8
  • Right triangle - ratio
    rt_triangle The lengths of the legs of the right triangle ABC are in ratio b = 2: 3. The hypotenuse is 10 cm long. Calculate the lengths of the legs of that triangle.
  • Similar triangles
    triangles In the triangle DEF is DE = 21cm, EF = 14.7cm, DF = 28cm. The triangle D´E´F´ is similar to the triangle DEF. Calculate the lengths of the sides of the triangle D´E´F´ if the similarity coefficient is one-seventh.
  • Two similar
    triangles Two similar triangles, one has a circumference of 100 cm, the second has sides successively 8 cm, 14 cm, 18 cm longer than the first. Find the lengths of its sides.
  • Similarity coefficient
    triangles In the triangle TMA the length of the sides is t = 5cm, m = 3.5cm, a = 6.2cm. Another similar triangle has side lengths of 6.65 cm, 11.78 cm, 9.5 cm. Determine the similarity coefficient of these triangles and assign similar sides to each other.
  • Similar triangles
    triangles The triangles ABC and XYZ are similar. Find the missing lengths of the sides of the triangles. a) a = 5 cm b = 8 cm x = 7.5 cm z = 9 cm b) a = 9 cm c = 12 cm y = 10 cm z = 8 cm c) b = 4 cm c = 8 cm x = 4.5 cm z = 6 cm
  • Area of iso-trap
    diagons-of-an-isosceles-trapezoid Find the area of an isosceles trapezoid if the lengths of its bases are 16 cm and 30 cm, and the diagonals are perpendicular to each other.
  • Free space in the garden
    euklid The grandfather's free space in the garden was in the shape of a rectangular triangle with 5 meters and 12 meters in length. He decided to divide it into two parts and the height of the hypotenuse. For the smaller part creates a rock garden, for the large
  • Right 24
    euclid_theorem Right isosceles triangle has an altitude x drawn from the right angle to the hypotenuse dividing it into 2 unequal segments. The length of one segment is 5 cm. What is the area of the triangle? Thank you.