# Cuboid height

What is the height of the cuboid if the edges of its base are 15 cm and 4 cm long and its volume is 420 cm cubic?

**Correct result:****Showing 0 comments:**

Tips to related online calculators

Tip: Our volume units converter will help you with the conversion of volume units.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Tray

Wjat height reach water level in the tray shaped a cuboid, if it is 420 liters of water and bottom dimensions are 120 cm and 70 cm. - Prism

The base of a perpendicular triangular prism is a right triangle with legs 4.5 cm and 6 cm long. What is the surface of the prism, if its volume is 54 cubic centimeters? - Height of the cuboid

Cuboid with a rectangular base, measuring 3 cm and 4 cm diagonal has a body 13 centimeters long. What is the height of the cuboid? - Base of prism

The base of the perpendicular prism is a rectangular triangle whose legs length are at a 3: 4 ratio. The height of the prism is 2cm smaller than the larger base leg. Determine the volume of the prism if its surface is 468 cm^{2}. - Cuboid edges in ratio

Cuboid edges lengths are in ratio 2:4:6. Calculate their lengths if you know that the cuboid volume is 24576 cm^{3}. - Juice box 2

Box with juice has the shape of a cuboid. Internal dimensions are 15 cm, 20 cm and 32 cm. If the box stay at the smallest base juice level reaches 4 cm below the upper base. How much internal volume of the box fills juice? How many cm below the top of the - Cuboid walls

Calculate the cuboid volume if its different walls have an area of 195cm², 135cm², and 117cm². - Rhombus base

Calculate the volume and surface area of prisms whose base is a rhombus with diagonals u_{1}= 12 cm and u_{2}= 15 cm. Prism height is twice base edge length. - Cylinder - h

Cylinder volume is 215 cm^{3}. Base radius is 2 cm. Calculate the height of the cylinder. - Cuboid - edges

The cuboid has dimensions in ratio 4: 3: 5, the shortest edge is 12 cm long. Find: (A) the lengths of the remaining edges, (B) the surface of the cuboid, (C) the volume of the cuboid - Cuboid diagonals

The cuboid has dimensions of 15, 20 and 40 cm. Calculate its volume and surface, the length of the body diagonal and the lengths of all three wall diagonals. - The regular

The regular quadrilateral pyramid has a volume of 24 dm^{3}and a height of 45 cm. Calculate its surface. - Four prisms

Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm^{2}b) 300 cm^{2}c) 3000 cm^{3}d) 300 cm^{3}Question No.2: The base of the prism is a rhombus with a side length of 30 cm and a height of 27 cm. The heig - Cuboid and ratio

Find the dimensions of a cuboid having a volume of 810 cm^{3}if the lengths of its edges coming from the same vertex are in ratio 2: 3: 5 - Cone - from volume surface area

The volume of the rotating cone is 1,018.87 dm^{3}, its height is 120 cm. What is the surface area of the cone? - Quadrilateral pyramid,

A quadrilateral pyramid, which has a rectangular base with dimensions of 24 cm, 13 cm. The height of the pyramid is 18cm. Calculate 1/the area of the base 2/casing area 3/pyramid surface 4/volume of the pyramid - Cuboid face diagonals

The lengths of the cuboid edges are in the ratio 1: 2: 3. Will the lengths of its diagonals be the same ratio? The cuboid has dimensions of 5 cm, 10 cm, and 15 cm. Calculate the size of the wall diagonals of this cuboid.