Right triangle from axes

A line segment has its ends on the coordinate axes and forms with them a triangle of area equal to 36 square units. The segment passes through the point ( 5,2). What is the slope of the line segment?

Correct result:

k1 =  -0.0149
k2 =  -10.7051

Solution:

S=36 S=ab2 ab=2 36=72 k=2b5a=ba  (2b)a=b (5a) (272/a)a=72/a (5a)  (2a72)a=72(5a)  (2a72)a=72 (5a) 2a2144a+360=0  p=2;q=144;r=360 D=q24pr=144242360=17856 D>0  a1,2=q±D2p=144±178564=144±24314 a1,2=36±33.40658617698 a1=69.40658617698 a2=2.5934138230199   Factored form of the equation:  2(a69.40658617698)(a2.5934138230199)=0   b1=72/a1=72/69.40661.0374 b2=72/a2=72/2.593427.7626 k1=b1a1=1.037469.4066=0.0149

Our quadratic equation calculator calculates it.

k2=b2a2=27.76262.5934=10.7051



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
For Basic calculations in analytic geometry is helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.
Looking for help with calculating roots of a quadratic equation?
Need help calculate sum, simplify or multiply fractions? Try our fraction calculator.
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Sphere equation
    sphere2 Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).
  • Secret treasure
    max_cylinder_pyramid Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Determine the radius r (and height h) of the container so that they can hide the largest possible treasure.
  • Isosceles triangle
    rr_triangle3 In an isosceles triangle ABC with base AB; A [3,4]; B [1,6] and the vertex C lies on the line 5x - 6y - 16 = 0. Calculate the coordinates of vertex C.
  • Points on circle
    coordinates_circle In the Cartesian coordinate system with the origin O is a sketched circle k /O; r=2 cm/. Write all the points that lie on a circle k and whose coordinates are integers. Write all the points that lie on the circle I / O; r=5 cm / and whose coordinates are
  • Ellipse
    elipsa Ellipse is expressed by equation 9x2 + 25y2 - 54x - 100y - 44 = 0. Find the length of primary and secondary axes, eccentricity, and coordinates of the center of the ellipse.
  • Equilateral triangle ABC
    equliateral In the equilateral triangle ABC, K is the center of the AB side, the L point lies on one-third of the BC side near the point C, and the point M lies in the one-third of the side of the AC side closer to the point A. Find what part of the ABC triangle cont
  • Right triangle
    righttriangle Legs of the right triangle are in the ratio a:b = 2:8. The hypotenuse has a length of 87 cm. Calculate the perimeter and area of the triangle.
  • Right triangle eq2
    rt_triangle_1 Find the lengths of the sides and the angles in the right triangle. Given area S = 210 and perimeter o = 70.
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Triangular prism
    prism3_1 The triangular prism has a base in the shape of a right triangle, the legs of which is 9 cm and 40 cm long. The height of the prism is 20 cm. What is its volume cm3? And the surface cm2?
  • Infinite sum of areas
    height-of-equilateral-triangle Above the height of the equilateral triangle ABC is constructed an equilateral triangle A1, B1, C1, of the height of the equilateral triangle built A2, B2, C2, and so on. The procedure is repeated continuously. What is the total sum of the areas of all tr
  • An equilateral
    rs_triangle2 An equilateral triangle is inscribed in a square of side 1 unit long so that it has one common vertex with the square. What is the area of the inscribed triangle?
  • Perimeter and legs
    RT_triangle Determine the perimeter of a right triangle if the length of one leg is 75% length of the second leg and its content area is 24 cm2.
  • Ratio of sides
    described_circle2 Calculate the area of a circle that has the same circumference as the circumference of the rectangle inscribed with a circle with a radius of r 9 cm so that its sides are in ratio 2 to 7.
  • Roof cover
    jehlan_4b_obdelnik Above the pavilion with a square ground plan with a side length of a = 12 m is a pyramid-shaped roof with a height v = 4.5 m. Calculate how much m2 of sheet metal is needed to cover this roof if 5.5% of the sheet we must add for joints and waste.
  • Nonagon
    9gon Calculate the area and perimeter of a regular nonagon if its radius of inscribed circle is r = 10cm
  • Top of the tower
    veza The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m, the pyramid height is 1.6 m. How many square meters of sheet metal is needed to cover the top of the tower if 15% extra sheet metal is needed for joint