Right triangle from axes

A line segment has its ends on the coordinate axes and forms with them a triangle of area equal to 36 square units. The segment passes through the point ( 5,2). What is the slope of the line segment?

Correct result:

k1 =  -0.0149
k2 =  -10.7051

Solution:

S=36 S=ab2 ab=2 36=72 k=2b5a=ba  (2b)a=b (5a) (272/a)a=72/a (5a)  (2a72)a=72(5a)  (2a72)a=72 (5a) 2a2144a+360=0  p=2;q=144;r=360 D=q24pr=144242360=17856 D>0  a1,2=q±D2p=144±178564=144±24314 a1,2=36±33.406586177 a1=69.406586177 a2=2.59341382302   Factored form of the equation:  2(a69.406586177)(a2.59341382302)=0   b1=72/a1=72/69.40661.0374 b2=72/a2=72/2.593427.7626 k1=b1a1=1.037469.4066=0.0149

Our quadratic equation calculator calculates it.

k2=b2a2=27.76262.5934=10.7051



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
For Basic calculations in analytic geometry is a helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.
Looking for help with calculating roots of a quadratic equation?
Need help calculate sum, simplify or multiply fractions? Try our fraction calculator.
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Sphere equation
    sphere2 Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Center of line segment
    stredna_priecka_1 Calculate the distance of the point X [1,3] from the center of the line segment x = 2-6t, y = 1-4t ; t is .
  • Equation of circle 2
    circle_axes Find the equation of a circle which touches the axis of y at a distance 4 from the origin and cuts off an intercept of length 6 on the axis x.
  • Right angled triangle 2
    vertex_triangle_right LMN is a right-angled triangle with vertices at L(1,3), M(3,5), and N(6,n). Given angle LMN is 90° find n
  • Calculate 6
    distance_point_line Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1].
  • Isosceles triangle
    rr_triangle3 In an isosceles triangle ABC with base AB; A [3,4]; B [1,6] and the vertex C lies on the line 5x - 6y - 16 = 0. Calculate the coordinates of vertex C.
  • Coordinate axes
    tr_triangle_axes Determine the area of the triangle given by line -7x+7y+63=0 and coordinate axes x and y.
  • A cell tower
    tower A cell tower is located at coordinates (-5, -7) and has a circular range of 12 units. If Mr. XYZ is located at coordinates (4,5), will he be able to get a signal?
  • Right isosceles triangle
    euclid_theorem_1 Right isosceles triangle has an altitude x drawn from the right angle to the hypotenuse dividing it into 2 equal segments. The length of one segment is 5 cm. What is the area of the triangle?
  • Ellipse
    elipsa Ellipse is expressed by equation 9x2 + 25y2 - 54x - 100y - 44 = 0. Find the length of primary and secondary axes, eccentricity, and coordinates of the center of the ellipse.
  • On a line
    linearna On a line p : 3 x - 4 y - 3 = 0, determine the point C equidistant from points A[4, 4] and B[7, 1].
  • Five circles
    kruhy On the line segment CD = 6 there are 5 circles with radius one at regular intervals. Find the lengths of the lines AD, AF, AG, BD, and CE
  • Circle
    circle_ag Write the equation of a circle that passes through the point [0,6] and touch the X-axis point [5,0]: ?
  • Vertices of a right triangle
    right_triangle_5 Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle.
  • General line equations
    lines_1 In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the line is given by the slope form: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) t
  • The midpoint
    lines The midpoint of (2, 5) and (8, y) is (5, -1). Find the line equation in slope-intercept form.