Scalar product

Calculate the scalar product of two vectors: (2.5) (-1, -4)

Correct answer:

s =  -22

Step-by-step explanation:

s=2 (1)+5 (4)=22



Did you find an error or inaccuracy? Feel free to write us. Thank you!



avatar




Tips to related online calculators
Our vector sum calculator can add two vectors given by their magnitudes and by included angle.

You need to know the following knowledge to solve this word math problem:

Related math problems and questions:

  • Space vectors 3D
    vectors The vectors u = (1; 3; -4), v = (0; 1; 1) are given. Find the size of these vectors, calculate the angle of the vectors, the distance between the vectors.
  • Scalar dot product
    dot_product Calculate u.v if |u| = 5, |v| = 2 and when angle between the vectors u, v is: a) 60° b) 45° c) 120°
  • Vector v4
    scalar_product Find the vector v4 perpendicular to vectors v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) and v3 = (0, 0, 1, 1)
  • Parallel and orthogonal
    vectors2 I need math help in this problem: a=(-5, 5 3) b=(-2,-4,-5) (they are vectors) Decompose the vector b into b=v+w where v is parallel to a and w is orthogonal to a, find v and w
  • Angle between vectors
    arccos Find the angle between the given vectors to the nearest tenth of a degree. u = (-22, 11) and v = (16, 20)
  • Vector - basic operations
    vectors There are given points A [-9; -2] B [2; 16] C [16; -2] and D [12; 18] a. Determine the coordinates of the vectors u=AB v=CD s=DB b. Calculate the sum of the vectors u + v c. Calculate difference of vectors u-v d. Determine the coordinates of the vector w
  • Vectors abs sum diff
    vectors_sum0 The vectors a = (4,2), b = (- 2,1) are given. Calculate: a) |a+b|, b) |a|+|b|, c) |a-b|, d) |a|-|b|.
  • Vector perpendicular
    3dperpendicular Find the vector a = (2, y, z) so that a⊥ b and a ⊥ c where b = (-1, 4, 2) and c = (3, -3, -1)
  • Angle of the body diagonals
    body_diagonals_angle Using vector dot product calculate the angle of the body diagonals of the cube.
  • Cuboids
    3dvectors Two separate cuboids with different orientation in space. Determine the angle between them, knowing the direction cosine matrix for each separate cuboid. u1=(0.62955056, 0.094432584, 0.77119944) u2=(0.14484653, 0.9208101, 0.36211633)
  • Vectors
    vectors Vector a has coordinates (8; 10) and vector b has coordinates (0; 17). If the vector c = b - a, what is the magnitude of the vector c?
  • Parametric form
    vzdalenost Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. ..
  • Perpendicular projection
    lines Determine the distance of a point B[1, -3] from the perpendicular projection of a point A[3, -2] on a straight line 2 x + y + 1 = 0.
  • Vector equation
    collinear2 Let’s v = (1, 2, 1), u = (0, -1, 3) and w = (1, 0, 7) . Solve the vector equation c1 v + c2 u + c3 w = 0 for variables c1 c2, c3 and decide weather v, u and w are linear dependent or independent
  • Three points 2
    vectors_sum0 The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB, and DC is parallel to AB. Calculate the coordinates of D.
  • Vectors
    green For vector w is true: w = 2u-5v. Determine coordinates of vector w if u=(3, -1), v=(12, -10)
  • Vector sum
    vectors The magnitude of the vector u is 12 and the magnitude of the vector v is 8. Angle between vectors is 61°. What is the magnitude of the vector u + v?