# Calculate 81860

The two terms of the geometric sequence are a2=12 and a5=three halves.

a) calculate the tenth term of the sequence.

b) calculate the sum of the first 8 terms of the sequence.

v) how many first terms of the sequence need to be added so that the sum is equal to 45?

a) calculate the tenth term of the sequence.

b) calculate the sum of the first 8 terms of the sequence.

v) how many first terms of the sequence need to be added so that the sum is equal to 45?

## Correct answer:

Tips for related online calculators

Need help calculating sum, simplifying, or multiplying fractions? Try our fraction calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Parabolic sequence

Find the sum of the first nine terms of an arithmetic sequence whose general term is a(n) = 3n²+5 - In the

In the arithmetic sequence, a1 = 4.8, d = 0.4. How many consecutive members, starting with the first, need to be added so that the sum is greater than 170? - AP - general term

Find the sum of the first 12 terms of the arithmetic sequence whose general term is an=3n+5. - Determine 81794

Determine the quotient of the geometric sequence with the first term a1=36 so that s2 is less than or equal to 252.

- The third 2

The third term of an arithmetic sequence is -12, and the seventh term is 8. What is the sum of the first 10 terms? - Calculate 5539

Calculate the quotient of the geometric sequence if the sum of the first two terms equals 1.1, and a6 = 10000. A quotient is a natural number. - Calculate 82845

Calculate the sum of the first 9 terms of the geometric sequence if a3 equals 2 and a4 equals 8. - Difference 81849

Determine four numbers so that the first three form the successive three terms of an arithmetic sequence with difference d=-3 and the last three form the next terms of a geometric sequence with quotient q=one half. - The sum 23

The sum of the first 10 terms of an arithmetic sequence is 530. What is the first term if the last term is 80? What is the common difference?

- Difference 81696

Write the first 5 terms of the arithmetic sequence if the first term is a1=7 and the difference d= - 3 - The sum 21

The sum of a geometric progression's 2nd and 3rd terms is six times the 4th term. Find the two possible values of the common ratio B. If the second term is eight, the common ratio is positive. Find the first six terms. - In a GP 72+144

In a GP, the sum of the 2nd and fifth terms is 72, and the sum of the 3rd and 6th terms is 144. Find the common ratio, find the first term, and find the sum of the first six terms - Six terms

Find the first six terms of the sequence a1 = -3, an = 2 * an-1 - Common difference 2

What is the common difference of the arithmetic sequence with 20 terms, whose first term is 5a+b and the last term is 43a+20 b?

- Geometric sequence 4

It is given geometric sequence a_{3}= 7 and a_{12}= 3. Calculate s_{23}(= sum of the first 23 members of the sequence). - The sum 39

The sum of the first six terms of the arithmetic sequence is 72, and the second term is seven times the fifth term. Find the first term and the AP difference. - Arithmetic 81798

Two arithmetic sequences have the same first term. The nth term of the first sequence is 15, and of the second sequence, 21. The sum of the first n terms of the first sequence is 63, and of the second sequence, 84. Write the sums of the first n terms of b