Determine 82724

A right triangle has an area of 36 cm2. A square is placed in it so that two sides of the square are parts of two sides of a triangle, and one vertex of the square is in a third of the longest side.
Determine the area of this square.

Correct answer:

S2 =  9.6214 cm2

Step-by-step explanation:

S1=36 cm2  S1 = 2ab  ab = 2 S1 = 72  cm2 b = 72/a  c2=a2+b2 (c/3)2 = (ax)2 + x2  c2=a2+(72/a)2 (c/3)2 = (ax)2 + x2  c2=a2+(72/a)2 (c/3)2 = (ax)2 + x2  a=6.203686.2037 cm c=13.16 cm x=3.101843.1018 cm  b=72/a=72/6.203711.606 cm S2=x2=3.101829.6214 cm2   Verifying Solution:  c2=a2+b2=6.20372+11.606213.16 cm S3=2a b=26.2037 11.606=36 cm2



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: