Rotary cone

The volume of the rotation of the cone is 733 cm3. The angle between the side of the cone and the base angle is 75°. Calculate the lateral surface area of this cone.

Final Answer:

S =  397.72 cm2

Step-by-step explanation:

V=733 cm3 α=75   V = 31 π r2 h tan α =h:r = h/r  h = r tan α V = 31 π r3 tan α  r=3π tanα3 V=3π tan75° 3 V=33.1416 tan75° 3 733=33.1416 3.7320513 733=5.72413 cm  cos α = r:s = r/s s=cosαr=cos75° r=cos75° 5.7241=0.2588195.7241=22.11633 cm S=π r s=3.1416 5.7241 22.1163397.7152 cm2   Verifying Solution:   h=s2r2=22.116325.7241221.3627 cm A=π180°arccos(r/s)=π180°arccos(5.7241/22.1163)=75  V2=31 π r2 h=31 3.1416 5.72412 21.3627=733 cm3



Did you find an error or inaccuracy? Feel free to send us. Thank you!







Tips for related online calculators
See also our right triangle calculator.
Do you know the volume and unit volume, and want to convert volume units?
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.

You need to know the following knowledge to solve this word math problem:

arithmeticsolid geometryplanimetricsgoniometry and trigonometryUnits of physical quantitiesGrade of the word problem

 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: