Hexagon

There is regular hexagon ABCDEF. If area of the triangle ABC is 22, what is area of the hexagon ABCDEF?

I do not know how to solve it simply....

Result

S =  132

Solution:

S(ΔABC)=S(ΔABS) S=6SABS=6SABC=622=132S(\Delta ABC) = S(\Delta ABS) \ \\ S = 6 S_{ABS} = 6 S_{ABC} = 6 \cdot 22 = 132



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
See also our right triangle calculator.
See also our trigonometric triangle calculator.

 

 

Next similar math problems:

  1. House roof
    roof_pyramid_2 The roof of the house has the shape of a regular quadrangular pyramid with a base edge 17 m. How many m2 is needed to cover roof if roof pitch is 57° and we calculate 11% of waste, connections and overlapping of area roof?
  2. Candy - MO
    cukriky_4 Gretel deploys to the vertex of a regular octagon different numbers from one to eight candy. Peter can then choose which three piles of candy give Gretel others retain. The only requirement is that the three piles lie at the vertices of an isosceles trian
  3. Trapezoid - RR
    right_trapezium Find the area of the right angled trapezoid ABCD with the right angle at the A vertex; a = 3 dm b = 5 dm c = 6 dm d = 4 dm
  4. Rectangular triangles
    r_triangles The lengths of corresponding sides of two rectangular triangles are in the ratio 2:5. At what ratio are medians relevant to hypotenuse these right triangles? At what ratio are the contents of these triangles? Smaller rectangular triangle has legs 6 and 8
  5. The farmer
    field_2 The farmer would like to first seed his small field. The required amount depends on the seed area. Field has a triangular shape. The farmer had fenced field, so he knows the lengths of the sides: 119, 111 and 90 meters. Find a suitable way to determine t
  6. Bisectors
    right_triangle As shown, in △ ABC, ∠C = 90°, AD bisects ∠BAC, DE⊥AB to E, BE = 2, BC = 6. Find the perimeter of triangle △ BDE.
  7. Centre of mass
    centre_g_triangle The vertices of triangle ABC are from the line p distances 3 cm, 4 cm and 8 cm. Calculate distance from the center of gravity of the triangle to line p.
  8. Obtuse angle
    10979326_654459541349455_1236723697_n The line OH is the height of the triangle DOM, line MN is the bisector of angle DMO. obtuse angle between the lines MN and OH is four times larger than the angle DMN. What size is the angle DMO? (see attached image)
  9. Cosine
    theta Calculate the cosine of the smallest internal angle in a right-angled triangle with cathetus 3 and 8 and with the hypotenuse 8.544.
  10. Maple
    tree_javor Maple peak is visible from a distance 3 m from the trunk from a height of 1.8 m at angle 62°. Determine the height of the maple.
  11. Clock face
    center_angle clock face is given. Numbers 10 and 5, and 3 and 8 are connected by straight lines. Calculate the size of their angles.
  12. In a 2
    angles_7 In a thirteen sided polygon, the sum of five angles is 1274°, four of the eight angles remaining are equal and the other four are 18° less than each of the equal angles. Find the angles. .
  13. Boat
    boat_ramp A force of 300 kg (3000 N) is required to pull a boat up a ramp inclined at 14° with horizontal. How much does the boat weight?
  14. Annulus
    annulus_inscribed_circles Two concentric circles with radii 1 and 9 surround the annular circle. This ring is inscribed with n circles that do not overlap. Determine the highest possible value of n.
  15. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  16. Reference angle
    anglemeter Find the reference angle of each angle:
  17. Candies
    bonbons_2 In the box are 12 candies that look the same. Three of them are filled with nougat, five by nuts, four by cream. At least how many candies must Ivan choose to satisfy itself that the selection of two with the same filling? ?