Right triangle practice problems - page 18 of 86
Number of problems found: 1712
- Two groves
Two groves A and B are separated by a forest. Both are visible from the hunting grove C, which is connected to both by direct roads. What will be the length of the projected road from A to B if AC = 5004 m, BC = 2600 m, and angle ABC = 53° 45'?
- Powerplant chimney
From the building window at the height of 7.5 m, we can see the top of the factory chimney at an altitude angle of 76° 30 ′. We can see the chimney base from the same place at a 5° 50 ′ depth angle. How tall is the chimney?
- The swimmer
The swimmer swims at a constant speed of 0.85 m/s relative to water flow. The current speed in the river is 0.40 m/s, and the river width is 90 m. a) What is the resulting speed of the swimmer for the tree on the riverbank when the swimmer's motion is per
- Perpendicular line
According to the map, the scouts were supposed to proceed through the forest perpendicular to its straight edge, where the goal was 3 km away from the starting point. They already deviated from the correct direction by 5° at the start. How far from the ta
- Determine 8202
An observer watches two boats at depth angles of 64° and 48° from the top of the hill, which is 75 m above the lake level. Determine the distance between the boats if both boats and the observer are in the same vertical plane.
- Fighter
A military fighter flies at an altitude of 10 km. The ground position was aimed at an altitude angle of 23° and 12 seconds later at an altitude angle of 27°. Calculate the speed of the fighter in km/h.
- Map - climb
On the map of the High Tatras, on a scale of 1:11000, are cable car stations in the Tatranska Lomnica and the Skalnate Pleso with a distance of 354.6 mm. The altitude of these stations is 949 m and 1760 m. What is the average angle of climb on this cable
- Triangle P2
Can a triangle have two right angles?
- Two aircraft
Two planes fly to the airport. At some point, the first airplane is away from the airport by 98 km and the second by 138 km. The first aircraft flies at an average speed of 420 km/h, and the second average speed is 360 km/h, while the tracks of both plane
- Slope of the pool
Calculate the slope (ratio rise:run) of the bottom of the swimming pool long 40 m. The water depth at the beginning of the pool is 1.09 m (for children), and the depth at the end is 1.88 m (for swimmers). Calculated slope write it as a percentage and also
- Isosceles triangle 9
There is an isosceles triangle ABC where AB= AC. The perimeter is 64cm, and the altitude is 24cm. Find the area of the isosceles triangle.
- Angles
In the triangle ABC, the ratio of angles is α:β = 4:5. The angle γ is 36°. How big are the angles α and β?
- Ethernet cable
Charles and George are passionate gamers and live in houses opposite each other across the street so they can see each other through the windows. They decided their computers would connect to the telephone cable to play games together. Charles lives on th
- Triangles - combinations
How many different triangles with sides in whole centimeters have a perimeter of 12 cm?
- MIT 1869
You know the length of parts 9 and 16 of the hypotenuse, at which a right triangle's hypotenuse is divided by a height. The task is to find the lengths of the sides of the triangle and the length of line x. This assignment was part of the Massachusetts In
- Gimli Glider
Aircraft Boeing 767 lose both engines at 35000 feet. The plane captain maintains optimum gliding conditions. Every minute, lose 2100 feet and maintain constant speed 201 knots. Calculate how long it takes for a plane to hit the ground from engine failure.
- Raindrops
The train is moving at a speed of 60 km/h. Raindrops falling vertically in the absence of wind (with uniform movement due to the action of air resistance) leave traces on the windows of the train, deviating from the vertical direction by 30°. How fast are
- Boat in the lake
A boatman walks along the ship's deck at a constant speed of 5 km/h in a direction that forms an angle of 60° with the direction of the ship's speed. The boat moves with respect to the lake's calm surface at a constant speed of 10 km/h. Determine graphica
- Intersection 6653
Two straight paths cross, making an angle alpha = 53 degrees 30'. There are two pillars on one of them, one at the intersection, the other at a distance of 500m from it. How far does one have to go from the intersection along the other road to see both po
- Perpendicular direction
A speedboat moves relative to the water at a constant speed of 13 m/s. The speed of the water current in the river is 5 m/s a) At what angle concerning the water current must the boat sail to keep moving perpendicular to the banks of the river? b) At what
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.
See also our right triangle calculator.