Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.
The result:
3 1/5 - 1 4/5 = 7/5 = 1 2/5 = 1.4
The result spelled out in words is seven fifths (or one and two fifths).How do we solve fractions step by step?
- Conversion a mixed number 3 1/5 to a improper fraction: 3 1/5 = 3 1/5 = 3 · 5 + 1/5 = 15 + 1/5 = 16/5
To find a new numerator:
a) Multiply the whole number 3 by the denominator 5. Whole number 3 equally 3 * 5/5 = 15/5
b) Add the answer from the previous step 15 to the numerator 1. New numerator is 15 + 1 = 16
c) Write a previous answer (new numerator 16) over the denominator 5.
Three and one fifth is sixteen fifths. - Conversion a mixed number 1 4/5 to a improper fraction: 1 4/5 = 1 4/5 = 1 · 5 + 4/5 = 5 + 4/5 = 9/5
To find a new numerator:
a) Multiply the whole number 1 by the denominator 5. Whole number 1 equally 1 * 5/5 = 5/5
b) Add the answer from the previous step 5 to the numerator 4. New numerator is 5 + 4 = 9
c) Write a previous answer (new numerator 9) over the denominator 5.
One and four fifths is nine fifths. - Subtract: 16/5 - 9/5 = 16 - 9/5 = 7/5
Both fractions have the same denominator, which is then the common denominator in the subtracting them. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, sixteen fifths minus nine fifths equals seven fifths.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
| Symbol | Symbol name | Symbol Meaning | Example |
|---|---|---|---|
| + | plus sign | addition | 1/2 + 1/3 |
| - | minus sign | subtraction | 1 1/2 - 2/3 |
| * | asterisk | multiplication | 2/3 * 3/4 |
| × | times sign | multiplication | 2/3 × 5/6 |
| : | division sign | division | 1/2 : 3 |
| / | division slash | division | 1/3 / 5 |
| : | colon | complex fraction | 1/2 : 1/3 |
| ^ | caret | exponentiation / power | 1/4^3 |
| () | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: (){}), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., + and -, or * and /) must be evaluated from left to right.
Fractions in word problems:
- Pizza 16
Kevin ate 5/12 of his pizza. Which is a better estimate for the amount of pizza that he ate: A. about half of the pizza or B. almost all of the pizza? - Benson
Benson spends ⅓ of his pocket money on transport and ⅔ on food I. What fraction of his pocket money did he spend on transport and food? ii. What fraction is left? - Nida had
Nida had 1/12 of a pizza. She gave 1/8 of it to her friend Madeeha. Find what part of the whole pizza did Madeeha get. - Raspberry 5406
Mom baked a raspberry pie on Saturday and divided it into 48 pieces. My father ate 2/48 cakes on the same day, Janka 4/48, and Jakub 7/48 cakes. What part of the cake remained on Sunday? - Cereals
Cole and Carl share an 18-ounce box of cereal. By the end of the week, Cole has eaten 1/6 of the box, and Carl has eaten 2/3 of the box of cereal. How many ounces are left in the box? - Carlo 2
Carlo had 5/6 of pizza, and Dannah had 1 5/8 of a similar pizza. How much more pizza did Dannah have than Carlo? - Conner
Conner picked 8 1/5 pounds of apples. Louisa picked 9 2/3 pounds of apples. How many apples, more pounds, did Louisa pick than Conner?
more math problems »
Last Modified: November 19, 2025
