Fraction calculator
This calculator divides fractions. The first step makes the reciprocal value of the second fraction - exchange numerator and denominator of 2nd fraction. Then multiply both numerators and place the result over the product of both denominators. Then simplify the result to the lowest terms or a mixed number.
The result:
7/12 / 3/10 = 35/18 = 1 17/18 ≅ 1.9444444
The spelled result in words is thirty-five eighteenths (or one and seventeen eighteenths).How do we solve fractions step by step?
- Divide: 7/12 : 3/10 = 7/12 · 10/3 = 7 · 10/12 · 3 = 70/36 = 2 · 35 /2 · 18 = 35/18
Dividing two fractions is the same as multiplying the first fraction by the reciprocal value of the second fraction. The first sub-step is to find the reciprocal (reverse the numerator and denominator, reciprocal of 3/10 is 10/3) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. In the following intermediate step, cancel by a common factor of 2 gives 35/18.
In other words - seven twelfths divided by three tenths is thirty-five eighteenths.
Rules for expressions with fractions:
Fractions - use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) keep one space between the integer and
fraction and use a forward slash to input fractions i.e., 1 2/3 . An example of a negative mixed fraction: -5 1/2.
Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal point . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.
Fractions in word problems:
- Soup 4
Cornell makes 11/12 of a gallon of soup. He eats equal portions of soup for 5 days, with no soup remaining after the 5th day. How many gallons of soup did Cornell eat each day? - David 4
David made 4/3 of a quart of fruit juice. Each mug he has holds 1/3 of a quart. How many mugs will David be able to fill? - 6 cups of strawberries
Mr. Hunter decided to make a healthy snack for the 20 students in his class. He gave each student a dish of yogurt and divided 6 cups of strawberries equally among the dishes. How many cups of strawberries did each student get in their yogurt? Write your - Find two 4
Find two fractions between 1/4 and 2/3. How do you know you are right?
- Calculate 65044
The product of the three numbers is 224. The first is 10, and the second is 50 times smaller than the first. Calculate the third number. - Expressions
Let k represent an unknown number and express the following expressions: 1. The sum of the numbers n and two 2. The quotient of the numbers n and nine 3. Twice the number n 4. The difference between nine and the number n 5. Nine less than the number n - Online music sharing
Regina spent $45.50 over 6 1/2 months on music downloads. If she spent the same amount each month, how much did Regina spend per month on music downloads? Choose the equation that can be used to represent the situation.
more math problems »
Last Modified: October 9, 2024