Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, and division — and evaluates expressions with fractions. Each calculation includes detailed step-by-step explanations.
The result:
9 - 3 ÷ 1/3 + 1 = 1/1 = 1
Spelled out: one.How do we solve fractions step by step?
- Divide: 3 : 1/3 = 3/1 · 3/1 = 3 · 3/1 · 1 = 9/1 = 9
The first operand is an integer. It is equivalent to a fraction 3/1. Dividing two fractions is the same as multiplying the first fraction by the reciprocal value of the second fraction. The first sub-step is to find the reciprocal (reverse the numerator and denominator, reciprocal of 1/3 is 3/1) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators.
In other words, three divided by one third equals nine. - Subtract: 9 - the result of step No. 1 = 9 - 9 = 9/1 - 9/1 = 9 - 9/1 = 0/1 = 0
Both fractions have the same denominator, which is then the common denominator in the subtracting them.
In other words, nine minus nine equals zero. - Add: the result of step No. 2 + 1 = 0 + 1 = 0/1 + 1/1 = 0 + 1/1 = 1/1 = 1
Both fractions have the same denominator, which is then the common denominator in the adding them.
In other words, zero plus one equals one.
Rules for expressions with fractions:
Fractions - Use a forward slash to separate the numerator and denominator. For example, for five-hundredths, enter 5/100.Mixed numbers Leave one space between the whole number and the fraction part, and use a forward slash for the fraction. For example, enter 1 2/3 . For negative mixed numbers, write the negative sign before the whole number, such as -5 1/2.
Division of fractions - Since the forward slash is used for both fraction lines and division, use a colon (:) to divide fractions. For example, to divide 1/2 by 1/3, enter 1/2 : 1/3.
Decimals Enter decimal numbers using a decimal point (.), and they will be automatically converted to fractions. For example, enter 1.45.
Math Symbols
| Symbol | Symbol name | Symbol Meaning | Example |
|---|---|---|---|
| + | plus sign | addition | 1/2 + 1/3 |
| - | minus sign | subtraction | 1 1/2 - 2/3 |
| * | asterisk | multiplication | 2/3 * 3/4 |
| × | times sign | multiplication | 2/3 × 5/6 |
| : | division sign | division | 1/2 : 3 |
| / | division slash | division | 1/3 / 5 |
| : | colon | complex fraction | 1/2 : 1/3 |
| ^ | caret | exponentiation / power | 1/4^3 |
| () | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• fraction to decimal: 1/4
• fraction to percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• multiplying fractions: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
Order of Operations
Ever wondered why calculators don't just work left to right? This calculator follows the mathematical order of operations — a set of rules that ensures everyone solves expressions the same way, every time.
Popular Memory Tricks
Different regions use different mnemonics to remember this order:
* PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction
* BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
* BODMAS - Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction
* GEMDAS - Grouping symbols (parentheses, brackets, braces: (){}), Exponents, Multiplication, Division, Addition, Subtraction
The Golden Rules
Rule 1: Multiplication and division always come before addition and subtraction. Think of them as the VIPs that skip to the front of the line!
Rule 2: When operations have equal priority (like × and ÷, or + and −), work from left to right—just like reading a book.
Rule 3: Parentheses change the natural order of evaluation of operations.
Fractions in word problems:
- A cake 2
Karen sliced a cake into 10 slices. She ate 2/10 of it and after some time she ate another 4/10 of it. How much of the cake did Karen eat? - Work out 2
Work out the sum of 2/6 and 1/6. Give your answer in its simplest form. - My whole
My whole number is 88 if you add 5 thousandths, 8 tenths, and 7 thousandths. What number will I be? - There 22
There is 5/8 of a pizza in one box and 9/12 of a pizza in another box. How much do you have altogether? - Party pizza
At a party, there were some pizzas of the same size. Amelia ate 1/3 of a pizza. Chris ate 1/3 of a pizza. Miguel ate 5/12 of a pizza. How many pizzas did the three children eat? - Adding two fractions
Find the missing fraction: 2/5 + 7/10 = - Number sum
What is 4/5 of the sum of numbers (-4.95) and (-11.05)?
more math problems »
Last Modified: January 30, 2026
