# Combi-triangle

On each side of the square is marked 10 different points outside the vertices of the square. How many triangles can be constructed from this set of points, where each vertex of the triangle lie on the other side of the square?

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Count of triangles

Given a square ABCD and on each side 8 internal points. Determine the number of triangles with vertices at these points. - Math logic

There are 20 children in the group, each two children have a different name. Alena and John are among them. How many ways can we choose 8 children to be among the selected A) was John B) was John and Alena C) at least one was Alena, John D) maximum one w - Committees

How many different committees of 6 people can be formed from a class of 30 students? - PIN - codes

How many five-digit PIN - code can we create using the even numbers? - Seating

How many ways can 10 people sit on 0 numbered chairs (eg seat reservation on the train)? - Commitee

A class consists of 6 males and 7 females. How many committees of 7 are possible if the committee must consist of 2 males and 5 females? - Words

How many 3 letter "words" are possible using 14 letters of the alphabet? a) n - without repetition b) m - with repetition - Football league

In the 5th football league is 10 teams. How many ways can be filled first, second and third place? - Medals

In how many ways can be divided gold, silver and bronze medal among 21 contestant? - First class

The shipment contains 40 items. 36 are first grade, 4 are defective. How many ways can select 5 items, so that it is no more than one defective? - Variations

Determine the number of items when the count of variations of fourth class without repeating is 42 times larger than the count of variations of third class without repetition. - Candies

In the box are 12 candies that look the same. Three of them are filled with nougat, five by nuts, four by cream. At least how many candies must Ivan choose to satisfy itself that the selection of two with the same filling? ? - Olympics metals

In how many ways can be win six athletes medal positions in the Olympics? Metal color matters. - Probability

What are the chances that the lottery, in which the numbers are drawn 5 of 50 you win the first prize? - Weekly service

In the class are 20 pupils. How many opportunities have the teacher if he wants choose two pupils randomly who will weeklies? - Theorem prove

We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started? - Big factorial

How many zeros end number 116! ?