# Vertices of RT

```#0  xxx() called at [/LinSys.php:671]
#1  LinSys::tryIntegerEquations(Array ([0] => D,[1] => S,[2] => a,[3] => a1,[4] => a2,[5] => b,[6] => b1,[7] => b2,[8] => c,[9] => c1,[10] => c2,[11] => d,[12] => e,[13] => h,[14] => i,[15] => l,[16] => m,[17] => o,[18] => s,[19] => t,[20] => u,[21] => v,[22] => w), Array ([0] => what=vc&a=5&a1=0&3dd=3D&a2=&b=2&b1=1&b2=&c=4&c1=7&c2=&submit=Solve&3d=0), 1) called at [/LinSys.php:344]
#2  LinSys::SolveInner(what=vc&a=5&a1=0&3dd=3D&a2=&b=2&b1=1&b2=&c=4&c1=7&c2=&submit=Solve&3d=0, , 1, linsys, 1, , 1, 1) called at [/LinSys.php:220]
#3  LinSys::Solve(what=vc&a=5&a1=0&3dd=3D&a2=&b=2&b1=1&b2=&c=4&c1=7&c2=&submit=Solve&3d=0, , 1, linsys, 1, , 1) called at [/Example_Generic.php:87]
#4  Example_Generic->GenerateSolveVector(stdClass Object ([example_id] => 4921,[title_sk] => Body - vrcholy,[title_en] => Vertices of RT,[title_cz] => Body pravouhlého trojúhelníku,[add_date] => 2017-04-19 15:22:02,[img] => RightTriangleMidpoint_3.gif,[visible] => 1,[text_sk] => Ukážte, že body P1 (5,0), P2 (2,1) a P3 (4,7) sú vrcholy pravého trojuholníka.,[text_en] => Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.,[text_cz] => Ukažte, že body P1 (5,0), P2 (2,1) a P3 (4,7) jsou vrcholy pravého trojúhelníku.,[input_vector] => ,[output_vector] => \$x="x=##x1=5
y1 = 0
x2 = 2
y2 = 1
x3 = 4
y3 = 7
a = sqrt((x1-x2)^2+(y1-y2)^2)
b = sqrt((x1-x3)^2+(y1-y3)^2)
c = sqrt((x2-x3)^2+(y2-y3)^2)
x = b^2-(a^2+c^2)";
\$x_triangle="what=vc&a=5&a1=0&3dd=3D&a2=&b=2&b1=1&b2=&c=4&c1=7&c2=&submit=Solve&3d=0";,[user_id] => 12,[approved] => 1,[cnt_views] => 11077,[cnt_solved] => 213,[cnt_solved_ok] => 69,[focus] => 1,[preview_sk] => Ukážte, že body P1 (5,0), P2 (2,1) a P3 (4,7) sú vrcholy pravého trojuholníka.,[preview_en] => Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.,[preview_cz] => Ukažte, že body P1 (5,0), P2 (2,1) a P3 (4,7) jsou vrcholy pravého trojúhelníku.,[preview_vector_sk] => ,[preview_vector_en] => ,[preview_vector_cz] => ,[last_regenerate] => 2019-07-14 04:03:04,[external_url] => ,[suggestion_id] => 6574,[fulltext_sk] => ~ body vrcholy ukazte ze body p1 5 0 p2 2 1 a p3 4 7 su praveho trojuholnika planimetria pytagorova veta pravouhly trojuholnik fyzikalne jednotky uhol analyticka geometria 9 rocnik stredna skola 4921 ~,[fulltext_en] => ~ vertices of rt show that the points p1 5 0 p2 2 1&p3 4 7 are vertices a right triangle planimetrics pythagorean theorem units angle analytic geometry 9t 9 th grade 14y y high school 4921 ~,[fulltext_cz] => ~ body pravouhleho trojuhelniku ukazte ze body p1 5 0 p2 2 1 a p3 4 7 jsou vrcholy praveho planimetrie pythagorova veta pravouhly trojuhelnik fyzikalni jednotky uhel geometrie analyticka 9 rocnik stredni skola 4921 ~,[english_last_modified] => 0000-00-00 00:00:00,[title] => Vertices of RT,[text] => Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.), ) called at [/Example_Generic.php:869]
#5  Example_Generic->Run(stdClass Object ([example_id] => 4921,[title_sk] => Body - vrcholy,[title_en] => Vertices of RT,[title_cz] => Body pravouhlého trojúhelníku,[add_date] => 2017-04-19 15:22:02,[img] => RightTriangleMidpoint_3.gif,[visible] => 1,[text_sk] => Ukážte, že body P1 (5,0), P2 (2,1) a P3 (4,7) sú vrcholy pravého trojuholníka.,[text_en] => Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.,[text_cz] => Ukažte, že body P1 (5,0), P2 (2,1) a P3 (4,7) jsou vrcholy pravého trojúhelníku.,[input_vector] => ,[output_vector] => \$x="x=##x1=5
y1 = 0
x2 = 2
y2 = 1
x3 = 4
y3 = 7
a = sqrt((x1-x2)^2+(y1-y2)^2)
b = sqrt((x1-x3)^2+(y1-y3)^2)
c = sqrt((x2-x3)^2+(y2-y3)^2)
x = b^2-(a^2+c^2)";
\$x_triangle="what=vc&a=5&a1=0&3dd=3D&a2=&b=2&b1=1&b2=&c=4&c1=7&c2=&submit=Solve&3d=0";,[user_id] => 12,[approved] => 1,[cnt_views] => 11077,[cnt_solved] => 213,[cnt_solved_ok] => 69,[focus] => 1,[preview_sk] => Ukážte, že body P1 (5,0), P2 (2,1) a P3 (4,7) sú vrcholy pravého trojuholníka.,[preview_en] => Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.,[preview_cz] => Ukažte, že body P1 (5,0), P2 (2,1) a P3 (4,7) jsou vrcholy pravého trojúhelníku.,[preview_vector_sk] => ,[preview_vector_en] => ,[preview_vector_cz] => ,[last_regenerate] => 2019-07-14 04:03:04,[external_url] => ,[suggestion_id] => 6574,[fulltext_sk] => ~ body vrcholy ukazte ze body p1 5 0 p2 2 1 a p3 4 7 su praveho trojuholnika planimetria pytagorova veta pravouhly trojuholnik fyzikalne jednotky uhol analyticka geometria 9 rocnik stredna skola 4921 ~,[fulltext_en] => ~ vertices of rt show that the points p1 5 0 p2 2 1&p3 4 7 are vertices a right triangle planimetrics pythagorean theorem units angle analytic geometry 9t 9 th grade 14y y high school 4921 ~,[fulltext_cz] => ~ body pravouhleho trojuhelniku ukazte ze body p1 5 0 p2 2 1 a p3 4 7 jsou vrcholy praveho planimetrie pythagorova veta pravouhly trojuhelnik fyzikalni jednotky uhel geometrie analyticka 9 rocnik stredni skola 4921 ~,[english_last_modified] => 0000-00-00 00:00:00,[title] => Vertices of RT,[text] => Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle.)) called at [/index_real.php:185]
#6  HackMath->ExampleDetail() called at [/index_real.php:316]
#7  HackMath->ExampleAction() called at [/index_real.php:461]
#8  HackMath->Run() called at [/index_real.php:815]
#9  include(/index_real.php) called at [/index.php:41]
```