# Vertices of a right triangle

Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle.

### Correct answer:

Tips for related online calculators

Line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.

Do you want to convert length units?

See also our right triangle calculator.

See also our trigonometric triangle calculator.

Do you want to convert length units?

See also our right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

**geometry**- analytic geometry
- line segment
**arithmetic**- absolute value
**planimetrics**- Pythagorean theorem
- right triangle
- triangle

#### Units of physical quantities:

#### Grade of the word problem:

## Related math problems and questions:

- Vertices of RT

Show that the points P1 (5,0), P2 (2,1) & P3 (4,7) are the vertices of a right triangle. - Points collinear

Show that the point A(-1,3), B(3,2), C(11,0) are col-linear. - Quadrilateral 2

Show that the quadrilateral with vertices P1(0,1), P2(4,2) P3(3,6) P4(-5,4) has two right triangles. - Square 2

Points D[10,-8] and B[4,5] are opposed vertices of the square ABCD. Calculate area of the square ABCD. - Construct 8

Construct an analytical geometry problem where it is asked to find the vertices of a triangle ABC: the vertices of this triangle must be the points A (1,7) B (-5,1) C (5, -11). the said problem should be used the concepts of: distance from a point to a li - Curve and line

The equation of a curve C is y=2x² -8x+9, and the equation of a line L is x+ y=3 (1) Find the x coordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C? - Square

Points A[9,9] and B[-4,1] are adjacent vertices of the square ABCD. Calculate the area of the square ABCD. - Hyperbola

Find the equation of hyperbola that passes through the point M [30; 24] and has focal points at F1 [0; 4 sqrt 6], F2 [0; -4 sqrt 6]. - Distance 4527

There are two points, K and L, KL = 4 cm. Draw a line p passing through the point K and having a distance of 4 cm from the point L. - Perpendicular 28823

Points A(1,2), B(4,-2) and C(3,-2) are given. Find the parametric equations of the line that: a) It passes through point C and is parallel to the line AB, b) It passes through point C and is perpendicular to line AB. - Three points 2

The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB, and DC is parallel to AB. Calculate the coordinates of D. - Segment

Calculate the segment AB's length if the coordinates of the end vertices are A[10, -4] and B[5, 5]. - Calculate 7214

Two tangents are drawn from point C to a circle with a radius of 76 mm. The distance between the two contact points is 14 mm. Calculate the distance of point C from the center of the circle. - Medians and sides

Triangle ABC in the plane Oxy; are the coordinates of the points: A = 2.7 B = -4.3 C-6-1 Try to calculate the lengths of all medians and all sides. - On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0]. - A Cartesian framework

1. In a Cartesian framework, the functions f and g we know that: the function (f) is defined by f (x) = 2x^{2}, the function (g) is defined by g (x) = x + 3, the point (O) is the origin of the reference, point (C) is the point of intersection of t - Coordinates of the vertices

Calculate the coordinates of the vertices of a triangle if the equations of its sides are 7x-4y-1 = 0 x-2y + 7 = 0 2x + y + 4 = 0