Curve and line
The equation of a curve C is y=2x² -8x+9, and the equation of a line L is x+ y=3 (1) Find the x coordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C?
Correct answer:

Tips for related online calculators
The line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.
Are you looking for help with calculating roots of a quadratic equation?
Are you looking for help with calculating roots of a quadratic equation?
You need to know the following knowledge to solve this word math problem:
geometryalgebrabasic operations and conceptsGrade of the word problem
Related math problems and questions:
- Intersection of Q2 with line
The equation of a curve C is y=2x² - 8x +9, and the equation of a line L is x + y=3. (1) Find the x-coordinates of the points of intersection of L and C. (ii) show that one of these points is also the
- Coordinates of line points
I have a point A=[2,1] and a line y+x-5=0. How do I determine the coordinates of point A', which is the image of point A according to the given straight line?
- LS and y-axis intersection
In what ratio is the line segment joining P (5, 3) and Q (–5, 3) divided by the y-axis? Also, find the coordinates of the intersection point.
- Intersection 19343
What is the sum of all coordinates of points at the intersection of the line p: x = -1-2t, y = 5-4t, z = -3 + 6t, where t is a real number, with the coordinate planes xy and yz?
- X-coordinate 81737
In triangle ABC, determine the coordinates of point B if you know that points A and B lie on the line 3x-y-5=0, points A and C lie on line 2x+3y+4=0, point C lies on the x-coordinate axis, and the angle at vertex C is right.
- Intersections 80587
Draw the graph of the function y = -2x + 3. Calculate the coordinates of the intersections of the function's graph with the x and y axes.
- Two points
M and N are two points on the X-axis and Y-axis, respectively. Point P (3, 2) divides the line segment MN in a ratio of 2:3. Find: (i) the coordinates of M and N (ii) slope of the line MN.