# Squares above sides

Two squares are constructed on two sides of the ABC triangle. The square area above the BC side is 25 cm

Calculate the area of the square above the AC side in cm

^{2}. The height vc to the side AB is 3 cm long. The heel P of height vc divides the AB side in a 2: 1 ratio. The AC side is longer than the BC side. Calculate the length of the AB side in cm.Calculate the area of the square above the AC side in cm

^{2}.### Correct answer:

Tips to related online calculators

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Rhumbline

Find circumference and area of the rhumbline ABCD if the short side AD of which has a length of 5 cm, and the heel of the height from D leading to the AB side divides the AB side into two sections of 3 cm and 4 cm. - In a

In a right triangle, the areas of the squares above its sides are 169; 25 and 144. The length of its longer leg is: - Isosceles triangle 9

Given an isosceles triangle ABC where AB= AC. The perimeter is 64cm, and the altitude is 24cm. Find the area of the isosceles triangle. - Segment in a triangle

In a triangle ABC with the side/AB/ = 24 cm is constructed middle segment/DE/ = 18 cm parallel to the side AB at a distance 1 cm from AB. Calculate the height of the triangle ABC to side AB. - Rectangular triangle PQR

In the rectangular triangle PQR, the PQ leg is divided by the X point into two segments of which longer is 25cm long. The second leg PR has a length 16 cm. The length of the RX is 20 cm. Calculate the length p of side RQ. The result is round to 2 decimal - ABCD square

In the ABCD square, the X point lies on the diagonal AC. The length of the XC is three times the length of the AX segment. Point S is the center of the AB side. The length of the AB side is 1 cm. What is the length of the XS segment? - Rectangle 3-4-5

The sides of the rectangle are in a ratio of 3:4. The length of the rectangle diagonal is 20 cm. Calculate the content of the rectangle. - Side lengths

In the triangle ABC, the height to the side a is 6cm. The height to side b is equal to 9 cm. Side "a" is 4 cm longer than side "b". Calculate the side lengths a, b. - Triangle ABC

In a triangle ABC with the side BC of length 2 cm The middle point of AB. Points L and M split the AC side into three equal lines. KLM is an isosceles triangle with a right angle at the point K. Determine the lengths of the sides AB, AC triangle ABC. - Equilateral triangle ABC

In the equilateral triangle ABC, K is the center of the AB side, the L point lies on one-third of the BC side near the point C, and the point M lies in the one-third of the side of the AC side closer to the point A. Find what part of the ABC triangle cont - Right triangle - ratio

The lengths of the legs of the right triangle ABC are in ratio b = 2: 3. The hypotenuse is 10 cm long. Calculate the lengths of the legs of that triangle. - Right triangle

Draw a right triangle ABC if |AB| = 5 cm |BC| = 3 cm, |AC| = 4 cm. Draw Thales circle above the hypotenuse of the triangle ABC. - Equilateral triangle

The equilateral triangle has a 23 cm long side. Calculate its content area. - The sides

The sides of the rectangle are in a ratio of 3: 5 and its circumference measures 72 cm. Calculate: a) the size of both sides of the rectangle b) the area of the rectangle c) the length of the diagonals - Trapezoid

How long are the trapezoid bases with area 24 cm^{2}and height 3 cm. One base is 3 times longer than the shorter. - Sum of squares

The sum of squares above the sides of the rectangular triangle is 900 cm^{2}. Calculate content of square over the triangle's hypotenuse. - Right Δ

A right triangle has the length of one leg 11 cm and the hypotenuse 61 cm size. Calculate the height of the triangle.