Kilograms 19123

They were to dispatch and transport 35 machine tools of two types with a total weight of 16.54 tons from the plant. The machine of the first type weighed 420 kg. The second was 80 kilograms heavier. How many machines of the first and second kind did they ship?

Correct answer:

a =  12
b =  23

Step-by-step explanation:

m1=420 kg m2=m1+80=420+80=500 kg m=16.54 t kg=16.54 1000  kg=16540 kg  a+b=35 m=m1 a+m2 b a+b=35 16540=420 a+500 b  a+b=35 420a+500b=16540  Pivot:Row1Row2 420a+500b=16540 a+b=35  Row21420 Row1Row2 420a+500b=16540 0.19b=4.38  b=4.380952380.19047619=23 a=16540500b420=16540500 23420=12  a=12 b=23m_{1} = 420 \ \text{kg} \ \\ m_{2} = m_{1} + 80 = 420 + 80 = 500 \ \text{kg} \ \\ m = 16.54 \ \text{t} \rightarrow \ \text{kg} = 16.54 \cdot \ 1000 \ \ \text{kg} = 16540 \ \text{kg} \ \\ \ \\ a+b = 35 \ \\ m = m_{1} \cdot \ a+m_{2} \cdot \ b \ \\ a+b = 35 \ \\ 16540 = 420 \cdot \ a+500 \cdot \ b \ \\ \ \\ a+b = 35 \ \\ 420a+500b = 16540 \ \\ \ \\ Pivot: Row 1 ↔ Row 2 \ \\ 420a+500b = 16540 \ \\ a+b = 35 \ \\ \ \\ Row 2 - \dfrac{ 1 }{ 420 } \cdot \ Row 1 → Row 2 \ \\ 420a+500b = 16540 \ \\ -0.19b = -4.38 \ \\ \ \\ b = \dfrac{ -4.38095238 }{ -0.19047619 } = 23 \ \\ a = \dfrac{ 16540-500b }{ 420 } = \dfrac{ 16540-500 \cdot \ 23 }{ 420 } = 12 \ \\ \ \\ a = 12 \ \\ b = 23



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?

You need to know the following knowledge to solve this word math problem:

Units of physical quantities:

Grade of the word problem:

Related math problems and questions: