Flakes
A circle was inscribed in the square. We draw a semicircle above each side of the square as above the diameter. This resulted in four chips.
Which is bigger: the area of the middle square or the area of the four chips?
Which is bigger: the area of the middle square or the area of the four chips?
Correct answer:

Tips for related online calculators
You need to know the following knowledge to solve this word math problem:
- arithmetic
- square root
- comparing
- planimetrics
- Pythagorean theorem
- right triangle
- area of a shape
- triangle
- square
- circular sector
- circular arc
Units of physical quantities:
Grade of the word problem:
Related math problems and questions:
- Coat of arms
The class created its coat of arms, which had a shape composed of an isosceles trapezoid ABCD (shorter base is a = 4.5 cm long, longer 2a = 9 cm, trapezoid height 6 cm) and a semicircle with center S and diameter AB. Three identical isosceles triangles fo
- The amphitheater
The amphitheater has the shape of a semicircle, the spectators sit on the perimeter of the semicircle, and the stage forms the diameter of the semicircle. Which of the spectators, P, Q, R, S, T, sees the stage at the greatest viewing angle?
- Determine 2860
Five natural numbers are given, each of which is a triple of the previous one. The largest number is bigger by 1152 than the middle number in this series. From these five numbers, determine the first number.
- Semicircle
The semicircle with center S and the diameter AB is constructed equilateral triangle SBC. What is the magnitude of the angle ∠SAC?
- What is bigger?
Which ball has a larger volume: a football with a circumference of 66 cm or a volleyball with a diameter of 20 cm?
- Nonagon
Calculate the area and perimeter of a regular nonagon if its radius of the inscribed circle is r = 10cm
- Cutting square
We cut the circle with the highest possible diameter from a square with a side of 30 cm. How many percents of the square area is this circle?
- Right-angled 78394
A right-angled triangle was inscribed in a circle with a diameter of 20 cm, whose hypotenuse is the circle's diameter and has the largest possible area. Calculate the area of this triangle.
- A cone 3
A cone has a diameter of x cm and a slant height of y cm. A square pyramid has a base side length of x cm and a slant height of y cm. Which has the greater surface area? Explain.
- Semicircle
To a semicircle with a diameter of 10 cm, inscribe a square. What is the length of the square sides?
- Determines 38523
We have 30 flowers, and each one has three or four petals. They have a total of 102 chips. How many flowers have four petals? Z represents the number of flowers with 4 petals. Choose the expression that determines the number of flowers with 3 petals.
- Centimeters 6220
A pizza in the shape of a circle occupies an area of 94.985 square cm. What is the smallest integer diameter in centimeters that the plate on which we want to place this pizza must have so that the plates do not overlap
- Tank
In the middle of a cylindrical tank with a bottom diameter of 251 cm is a standing rod that is 13 cm above the water surface. If we bank the rod, its end reaches the water's surface just by the tank wall. How deep is the tank?
- Quatrefoil
Calculate the quatrefoil area, inscribed in a square with a side of 6 cm.
- Archaeologists 81478
Archaeologists need to find out the size of the vessel if the sherd found was in the shape of a circular section with a length of 12 cm and a height of 3 cm. What is the area of this section?
- Ratio of squares
A circle is given in which a square is inscribed. The smaller square is inscribed in a circular arc formed by the square's side and the circle's arc. What is the ratio of the areas of the large and small squares?
- MO circles
Juro built the ABCD square with a 12 cm side. In this square, he scattered a quarter circle with a center at point B passing through point A and a semicircle l with a center at the center of the BC side and passed point B. He would still build a circle th