# Diagonal in rectangle

In the ABCD rectangle is the center of BC, point E, and point F is the center of the CD. Prove that the lines AE and AF divide diagonal BD into three equal parts.

**Result**Tips for related online calculators

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

#### Units of physical quantities:

#### Themes, topics:

#### Grade of the word problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Trapezoid 4908

Trapezoid ABCD with bases AB = a, CD = c has height v. The point S is the center of the arm BC. Prove that the area of the ASD triangle is equal to half the area of the ABCD trapezoid. - Trapezoid thirds

The ABCD trapezoid has parallel sides AB and CD. The E point lies on the AB side. The segment DE divides the trapezoid into two parts with the same area. Find the length of the AE line segment. - MO - triangles

On the AB and AC sides of the ABC triangle lies successive points E and F, and on segment EF lie point D. The EF and BC lines are parallel. It is true this ratio FD:DE = AE:EB = 2:1. The area of the ABC triangle is 27 hectares, and line segments EF, AD, a - Internal angles

The ABCD is an isosceles trapezoid, which holds: |AB| = 2 |BC| = 2 |CD| = 2 |DA|: On the BC side is a K point such that |BK| = 2 |KC|, on its side CD is the point L such that |CL| = 2 |LD|, and on its side DA, the point M is such that | DM | = 2 |MA|. Det - Five circles

On the line segment CD = 6 there are five circles with one radius at regular intervals. Find the lengths of the lines AD, AF, AG, BD, and CE. - Rectangle

In rectangle ABCD with sides, |AB|=19, |AD|=16 is from point A guided perpendicular to the diagonal BD, which intersects at point P. Determine the ratio (|PB|)/(|DP|). - Rhombus construction

Construct ABCD rhombus if its diagonal AC=9 cm and side AB = 6 cm. Inscribe a circle in it, touching all sides. - Quadrilateral 66614

The picture shows a square ABCD with the center S and the side 8 cm long. Point E is any point on the CD side other than C and D. Calculate the area of the ASBE quadrilateral in cm². - The diagonals 2

The diagonals AC and BD of a rectangle ABCD intersect at a point O. If OA=4cm, find AC and BD. - Triangle in a square

In a square ABCD with side a = 6 cm, point E is the center of side AB, and point F is the center of side BC. Calculate the size of all angles of the triangle DEF and the lengths of its sides. - Isosceles 2588

Given an isosceles trapezoid ABCD, in which | AB | = 2 | BC | = 2 | CD | = 2 | DA | holds. On its side BC, the point K is such that | BK | = 2 | KC |, on its CD side, the point L is such that | CL | = 2 | LD |, and on its DA side, the point M is such that - Trapezoid ABCD

ABDC is a trapezoid in which AB and CD are parallel sides measuring 6 and 9, respectively. Angles ABC and BCD are both right angles. Find the length of segment BD. - Trapezoid MO-5-Z8

ABCD is a trapezoid in that lime segment CE is divided into a triangle and parallelogram. Point F is the midpoint of CE, the DF line passes through the center of the segment BE, and the area of the triangle CDE is 3 cm². Determine the area of the trapezoi - Distance 64804

Dan is the square ABCD. At its diagonal AC lies point E. The distance AB is equal to the distance AE. What is the size of the EBC angle? - Diagonal intersect

Isosceles trapezoid ABCD with length bases | AB | = 6 cm, CD | = 4 cm is divided into four triangles by the diagonals intersecting at point S. How much of the area of the trapezoid are ABS and CDS triangles? - Triangle ABC

In a triangle ABC with the side BC of length 2 cm. Point K is the middle point of AB. Points L and M split the AC side into three equal lines. KLM is an isosceles triangle with a right angle at point K. Determine the lengths of the sides AB, AC triangle A - Four-digit number

For a four-digit number abcd, ab: bc = 1: 3 and bc: cd = 2: 1 (ab, bc and cd are two-digit numbers from digits a, b, c, d). Find this number(s).