Perimeter and diagonal

The perimeter of the rectangle is 82 m, and the length of its diagonal is 29 m. Find the dimensions of the rectangle.

Correct answer:

a =  21 m
b =  20 m

Step-by-step explanation:

o=82 m u=29 m  u2 = a2+b2 o = 2(a+b)  u2=a2+(o/2a)2  292=a2+(82/2a)2 2a2+82a840=0 2a282a+840=0 2 ...  prime number 82=241 840=23357 GCD(2,82,840)=2  a241a+420=0  p=1;q=41;r=420 D=q24pr=41241420=1 D>0  a1,2=2pq±D=241±1 a1,2=241±1 a1,2=20.5±0.5 a1=21 a2=20 a=a1=21=21 m

Our quadratic equation calculator calculates it.

b=a2=20=20 m

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
See also our right triangle calculator.

You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: