# Triangular prism

The base of the perpendicular triangular prism is a right triangle with a leg length of 5 cm. The content area of the largest sidewall of its surface is 130 cm², and the height of the body is 10 cm. Calculate its volume.

**Correct result:****Showing 0 comments:**

Tips to related online calculators

Pythagorean theorem is the base for the right triangle calculator.

Tip: Our volume units converter will help you with the conversion of volume units.

See also our trigonometric triangle calculator.

Tip: Our volume units converter will help you with the conversion of volume units.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Triangular prism

The perpendicular triangular prism is a right triangle with a 5 cm leg. The content of the largest wall of the prism is 130 cm^{2}and the body height is 10 cm. Calculate the body volume. - Triangular prism

The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism. - Triangular prism

Calculate the volume and surface of the triangular prism ABCDEF with base of a isosceles triangle. Base's height is 16 cm, leg 10 cm, base height vc = 6 cm. The prism height is 9 cm. - Vertical prism

The base of the vertical prism is a right triangle with leg a = 5 cm and a hypotenuse c = 13 cm. The height of the prism is equal to the circumference of the base. Calculate the surface area and volume of the prism - Triangular pyramid

Calculate the volume and surface area of a regular triangular pyramid with height equal to the base edge 10 cm length. - 3s prism

It is given a regular perpendicular triangular prism with a height 19.0 cm and a base edge length 7.1 cm. Calculate the volume of the prism. - Triangular prism

Calculate the surface area and volume of a triangular prism, base right triangle if a = 3 cm, b = 4 cm, c = 5 cm, and height of prism h=12 cm. - Base of prism

The base of the perpendicular prism is a rectangular triangle whose legs length are at a 3: 4 ratio. The height of the prism is 2cm smaller than the larger base leg. Determine the volume of the prism if its surface is 468 cm^{2}. - Prism

The base of a perpendicular triangular prism is a right triangle with legs 4.5 cm and 6 cm long. What is the surface of the prism, if its volume is 54 cubic centimeters? - Triangular prism

The base perpendicular triangular prism is a right triangle whose hypotenuse measures 5 cm and one cathetus 2 cm. Height of the prism is equal to 7/9 of the perimeter of the base. Calculate the surface area of prism. - Triangular pyramid

It is given perpendicular regular triangular pyramid: base side a = 5 cm, height v = 8 cm, volume V = 28.8 cm^{3}. What is it content (surface area)? - Prism 4 sides

The prism has a square base with a side length of 3 cm. The diagonal of the sidewall of the prism/BG/is 5 cm. Calculate the surface of this prism in cm square and the volume in liters - Hexagonal prism

The base of the prism is a regular hexagon consisting of six triangles with side a = 12 cm and height va = 10.4 cm. The prism height is 5 cm. Find the volume and surface of the prism. - Quadrilateral pyramid

We have a regular quadrilateral pyramid with a base edge a = 10 cm and a height v = 7 cm. Calculate 1/base content 2/casing content 3/pyramid surface 4/volume of the pyramid - Triangular prism

Calculate the surface of a regular triangular prism, the edges of the base are 6 cm long and the height of the prism is 15 cm. - Prism

Right-angled prism, whose base is a right triangle with leg a = 3 cm and hypotenuse c = 13 cm, has the same volume as a cube with an edge length of 3 dm. a) Find the height of the prism b) Calculate the surface of the prism c) What percentage of the cube' - Triangular prism

Calculate the volume of a triangular prism 10 cm high, the base of which is an equilateral triangle with dimensions a = 5 cm and height va = 4,3 cm