Refractive index

The light passes through the interface between air and glass with a refractive index of 1.5. Find:
(a) the angle of refraction if light strikes the interface from the air at an angle of 40°.
(b) the angle of refraction when light strikes the glass interface at an angle of 40°.
(c) the angle of incidence if the light is refracted at an angle of 20° on impact from the glass.
(d) cut-off angle (justify for which way the light passes through the interface)

Correct answer:

A =  25.374 °
B =  74.6186 °
C =  30.8659 °
D =  41.8103 °

Step-by-step explanation:

n=1.5 α=40   sinα:sinA=n  A1=arcsin(sinα°/n)=arcsin(sin40° /n)=arcsin(sin40° /1.5)=arcsin(0.642788/1.5)=0.44286 A=A1  =A1 π180   =0.4429 π180   =25.374  =25.374=25°2226"
β=40   sinB:sinβ=n  B1=arcsin(n sinβ°)=arcsin(n sin40° )=arcsin(1.5 sin40° )=arcsin(1.5 0.642788)=1.30234 B=B1  =B1 π180   =1.3023 π180   =74.619  =74.6186=74°377"
γ=20   sinC:sinγ=n  C1=arcsin(n sinγ°)=arcsin(n sin20° )=arcsin(1.5 sin20° )=arcsin(1.5 0.34202)=0.53871 C=C1  =C1 π180   =0.5387 π180   =30.866  =30.8659=30°5157"
δ=90   sinδ:sinD=n  D1=arcsin(sinδ°/n)=arcsin(sin90° /n)=arcsin(sin90° /1.5)=arcsin(1/1.5)=0.72973 D=D1  =D1 π180   =0.7297 π180   =41.81  =41.8103=41°4837"



Did you find an error or inaccuracy? Feel free to write us. Thank you!



avatar







Tips to related online calculators
Check out our ratio calculator.
Most natural application of trigonometry and trigonometric functions is a calculation of the triangles. Common and less common calculations of different types of triangles offers our triangle calculator. Word trigonometry comes from Greek and literally means triangle calculation.

Related math problems and questions: