Plane II
A plane flew 50 km on a bearing of 63°20' and then flew in the direction of 153°20' for 140km. Find the distance between the starting point and the ending point.
Correct answer:
Tips for related online calculators
Do you want to convert length units?
See also our right triangle calculator.
See also our trigonometric triangle calculator.
See also our right triangle calculator.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
Units of physical quantities:
Grade of the word problem:
Related math problems and questions:
- Bearing - navigation
A ship travels 84 km on a bearing of 17° and then travels on a bearing of 107° for 135 km. Find the distance of the end of the trip from the starting point to the nearest kilometer. - In the desert
A man wondering in the desert walks 5.7 miles in the direction S 26° W. He then turns 90° and walks 9 miles in the direction N 49° W. At that time, how far is he from his starting point, and what is his bearing from his starting point? - Airport's 80482
The plane flew from airport m on a course of 132° to airport n, then from n to p on a course of 235°. The distance between the airport's mn is 380 km, np 284 km. What will be the return course to m, and what is the distance between the airport's pm? - Airplane navigation
An airplane leaves an airport and flies west 120 miles and then 150 miles in the direction S 44.1°W. How far is the plane from the airport (round to the nearest mile)?
- A man 7
A man wandering in the desert walks 3.8 miles in the direction of S 44° W. He then turns and walks 2.2 miles toward N 55° W. At that time, how far is he from his starting point? (Round your answer to two decimal places.) - Aircraft
The plane flies at altitude 6300 m. At the time of the first measurement was to see the elevation angle of 21° and the second measurement of the elevation angle of 46°. Calculate the distance the plane flew between the two measurements. - A radio antenna
Avanti is trying to find the height of a radio antenna on the roof of a local building. She stands at a horizontal distance of 21 meters from the building. The angle of elevation from her eyes to the roof (point A) is 42°, and the angle of elevation from