# Z9–I–1

In all nine fields of given shape to be filled natural numbers so that:

• each of the numbers 2, 4, 6 and 8 is used at least once,

• four of the inner square boxes containing the products of the numbers of adjacent cells of the outer square,

• in the circle is the sum of the numbers of adjacent cells of the inner square.

Find out what the smallest and the largest number that can be written in a circle.

• each of the numbers 2, 4, 6 and 8 is used at least once,

• four of the inner square boxes containing the products of the numbers of adjacent cells of the outer square,

• in the circle is the sum of the numbers of adjacent cells of the inner square.

Find out what the smallest and the largest number that can be written in a circle.

**Correct result:****Showing 0 comments:**

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

## Next similar math problems:

- Here is

Here is a data set (n=117) that has been sorted. 10.4 12.2 14.3 15.3 17.1 17.8 18 18.6 19.1 19.9 19.9 20.3 20.6 20.7 20.7 21.2 21.3 22 22.1 22.3 22.8 23 23 23.1 23.5 24.1 24.1 24.4 24.5 24.8 24.9 25.4 25.4 25.5 25.7 25.9 26 26.1 26.2 26.7 26.8 27.5 27.6 2 - Octahedron - sum

On each wall of a regular octahedron is written one of the numbers 1, 2, 3, 4, 5, 6, 7 and 8, wherein on different sides are different numbers. For each wall John make the sum of the numbers written of three adjacent walls. Thus got eight sums, which also - Z9–I–4 MO 2017

Numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9 were prepared for a train journey with three wagons. They wanted to sit out so that three numbers were seated in each carriage and the largest of each of the three was equal to the sum of the remaining two. The conduct - Square grid

Square grid consists of a square with sides of length 1 cm. Draw in it at least three different patterns such that each had a content of 6 cm^{2}and circumference 12 cm and that their sides is in square grid. - Mr. Zucchini

Mr. Zucchini had a rectangular garden whose perimeter is 28 meters. Content area of the garden filled just four square beds, whose dimensions in meters are expressed in whole numbers. Determine what size could have a garden. Find all the possibilities and - Endless lego set

The endless lego set contains only 6, 9, 20 kilograms blocks that can no longer be polished or broken. The workers took them to the gym and immediately started building different buildings. And of course, they wrote down how much the building weighed. The - Z9-I-4

Kate thought a five-digit integer. She wrote the sum of this number and its half at the first line to the workbook. On the second line wrote a total of this number and its one fifth. On the third row she wrote a sum of this number and its one nines. Final - Number train

The numbers 1,2,3,4,5,6,7,8 and 9 traveled by train. The train had three cars and each was carrying just three numbers. No. 1 rode in the first carriage, and in the last carriage was all odd numbers. The conductor calculated sum of the numbers in the firs - Air draft

The numbers 1,2,3,4,5 are written on five tickets on the table. Air draft randomly shuffled the tickets and composed a 5-digit number from them. What is the probability that he passed: and, the largest possible number b, the smallest possible number c, a - Snowman 2

On the medal, which has the shape of a circle with a diameter 18 cm is sketched snowman so that the following requirements are met: 1. snowman is composed of three circles, 2. space over snowman is the same as under it, 3. diameters of all circles express - Two math problems

1) The sum of twice a number and -6 is nine more than the opposite of that number. Find the number. 2) A collection of 27 coins, all nickels, and dimes, is worth $2.10. How many of each coin are there? The dime, in United States usage, is a ten-cent coin. - Quiz or test

I have a quiz with 20 questions. Each question has 4 multiple choice answers, A, B, C, D. THERE IS NO WAY TO KNOW THE CORRECT ANSWER OF ANY GIVEN QUESTION, but the answers are static, in that if the "correct" answer to #1 = C, then it will always be equal - Self-counting machine

The self-counting machine works exactly like a calculator. The innkeeper wanted to add several three-digit natural numbers on his own. On the first attempt, he got the result in 2224. To check, he added these numbers again and he got 2198. Therefore, he a - Pool

If water flows into the pool by two inlets, fill the whole for 19 hours. The first inlet filled pool 5 hour longer than the second. How long pool take to fill with two inlets separately? - Alarm clock

The old watchmaker has a unique digital alarm in its collection that rings whenever the sum of digits of the alarm is equal to 21. Find out when the alarm clock will ring. What is their number? List all options . .. - Four prisms

Question No. 1: The prism has the dimensions a = 2.5 cm, b = 100 mm, c = 12 cm. What is its volume? a) 3000 cm^{2}b) 300 cm^{2}c) 3000 cm^{3}d) 300 cm^{3}Question No.2: The base of the prism is a rhombus with a side length of 30 cm and a height of 27 cm. The heig - Mouse Hryzka

Mouse Hryzka found 27 identical cubes of cheese. She first put in a large cube out of them and then waited for a while before the cheese cubes stuck together. Then from every wall of the big cube she will eats the middle cube. Then she also eats the cube