Z9–I–1
Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo:
• každé z čísel 2, 4, 6 a 8 je použito alespoň jednou,
• čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce,
• v kruhu je součet čísel ze sousedících polí vnitřního čtverce.
Zjistěte, které nejmenší a které největší číslo může být napsáno v kruhu.
• každé z čísel 2, 4, 6 a 8 je použito alespoň jednou,
• čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce,
• v kruhu je součet čísel ze sousedících polí vnitřního čtverce.
Zjistěte, které nejmenší a které největší číslo může být napsáno v kruhu.
Správná odpověď:

Zobrazuji 21 komentářů:



Žák
Prosím Vás nevím jak do vnějších čtverců, pokud čísla nebudou 2 -ciferná, dostat všechna, aby u vnitřních čtverců vznikly nuly a tím pádem i uprostřed?

Žák
Prosím Vás nevím jak do vnějších čtverců, pokud čísla nebudou 2 -ciferná, dostat všechna, aby u vnitřních čtverců vznikly nuly a tím pádem i uprostřed?





Stabil
min = 14 pro vnejsi ctverec s kombinaci cisel 3,2,4,0
max = nekonecno pro vnejsi ctverec s kombinaci cisel 3,2,4,nekonecno
max = nekonecno pro vnejsi ctverec s kombinaci cisel 3,2,4,nekonecno
5 let 1 Like

Žák
min - byl bych spíše pro 3,2,4,1, protože v MO nulu nepočítají jako přirozené číslo
max - nevím jestli lze počítat nekonečno mezi přirozené čísla
max - nevím jestli lze počítat nekonečno mezi přirozené čísla



Jakmel-42
@Zuzii: Vyšlo mi to stejně. Ovšem nemohu to nijak ověřit, názory kolem nás se dost různí.

Žák
Min je 21.
Max nekonečno jak píše Stabil, jelikož jedno číslo můžete ve vnějším čtverci nahradit ,kterým koliv číslem a přitom splníte podmínky za pomoci 3 čísel.
Max nekonečno jak píše Stabil, jelikož jedno číslo můžete ve vnějším čtverci nahradit ,kterým koliv číslem a přitom splníte podmínky za pomoci 3 čísel.






Šíny
Jako min. číslo bych dala 9 ---> 2,4,0,3
ale jestliže MO nebere nulu jako přirozené číslo, tak by mi vyšlo 12 ---> 2,4,3,3
U max. mám nekonečno
ale jestliže MO nebere nulu jako přirozené číslo, tak by mi vyšlo 12 ---> 2,4,3,3
U max. mám nekonečno
5 let 2 Likes

K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Z9–I–1 2018 čísla
Najděte všechna kladná celá čísla x a y, pro která platí: 1/x + 1/y = 1/4
- MO Z6–I–3 2018
Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč
- MO B 2019 ukol 2
Přirozené číslo n má aspoň 73 dvojmístných dělitelů. Dokažte, že jedním z nich je číslo 60. Uveďte rovněž příklad čísla n, které má právě 73 dvojmístných dělitelů, včetně náležitého zdůvodnění.
- Ozubené soukolí 3
Ozubené soukolí je sestavené ze tří ozubených kol. První má 165 zubů, druhé 132 zubů a třetí 231, přičemž druhé zapadá do prvního a třetí do druhého kola. První a třetí se nedotýká. Kolikrát za minutu budou všechna tři kola ve stejném vzájemném postavení
- C–I–4 MO 2017
Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n² (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
- Z9-I-6 MO 2017
Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
- MO C–I–1 2018
Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
- MO Z9-I-3 2018
V našem městě jsou tři kina, kterým se říká podle světových stran. O jejich otevíracích dobách je známo, že: • každý den má otevřeno alespoň jedno kino, • pokud má otevřeno jižní kino, potom nemá otevřeno severní kino, • nikdy nemá otevřeno současně sever
- Z8 MO 2021
V dané skupině čísel je jedno číslo rovno průměru všech, největší číslo je o 7 větší než průměr, nejmenší je o 7 menší než průměr a většina čísel ze skupiny má podprůměrnou hodnotu. Jaký nejmenší počet čísel může být ve skupině?
- Z7–I–1 MO 2018
Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné číslo poskládané z těchto kartiček je dělitelné šesti. Navíc lze z těchto kartiček poskládat trojmístné číslo
- MO 2019 Z8–I–4
Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
- Z9 – I – 5 MO 2018
Adam a Eva vytvářeli dekorace z navzájem shodných bílých kruhů. Adam použil čtyři kruhy, které sestavil tak, že se každý dotýkal dvou jiných kruhů. Mezi ně pak vložil jiný kruh, který se dotýkal všech čtyř bílých kruhů, a ten vybarvil červeně. Eva použila
- MO Z9-I-6 2019
Kristýna zvolila jisté liché přirozené číslo dělitelné třemi. Jakub s Davidem pak zkoumali trojúhelníky, které mají obvod v milimetrech roven Kristýnou zvolenému číslu a jejichž strany mají délky v milimetrech vyjádřeny navzájem různými celými čísly. Jaku
- Na papíře
Na papíře bylo napsáno několik kladných celých čísel. Miška si pamatovala pouze to, že každé číslo bylo polovinou součtu všech ostatních čísel. Kolik čísel mohlo být napsaných na papíře?
- MO Z8–I–3 - 2017 - Adélka
Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane nej
- Smíchat mléko se smetanou
Chtěl bych se obrátit o pomoc s následujícím příkladem. Jak dosáhnu 8% roztoku? Potřebuji smíchat 3,5 % mléko s 33% smetanou. Děkuji za pomoc.
- Osmistěn
Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se