Z9–I–1

Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo:

• každé z čísel 2, 4, 6 a 8 je použito alespoň jednou,
• čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce,
• v kruhu je součet čísel ze sousedících polí vnitřního čtverce.

Zjistěte, které nejmenší a které největší číslo může být napsáno v kruhu.

Správná odpověď:

a =  0
b =  0



Našel si chybu či nepřesnost? Klidně nám ji napiš.



Zobrazuji 21 komentářů:
#
Mo
66. ročník Matematické olympiády
I. kolo kategorie Z9

4 roky  2 Likes
#
@user
Výsledek 0? Není to špatně?

4 roky  1 Like
#
Žák
Prosím Vás nevím jak do vnějších čtverců, pokud čísla nebudou 2 -ciferná, dostat všechna, aby u vnitřních čtverců vznikly nuly a tím pádem i uprostřed?

#
Žák
Prosím Vás nevím jak do vnějších čtverců, pokud čísla nebudou 2 -ciferná, dostat všechna, aby u vnitřních čtverců vznikly nuly a tím pádem i uprostřed?

#
Žák
reseni zatim nevime, resp. nebyl cas...

#
Matika321
minimum 64?

#
Žák
Ne, porad moc vysoke

#
Žák
Uz tam dajte to reseni

#
Stabil
min =  14 pro vnejsi ctverec s kombinaci cisel 3,2,4,0
max = nekonecno pro vnejsi ctverec s kombinaci cisel 3,2,4,nekonecno

4 roky  1 Like
#
Žák
min - byl bych spíše pro 3,2,4,1, protože v MO nulu nepočítají jako přirozené číslo
max - nevím jestli lze počítat nekonečno mezi přirozené čísla

#
Zuzii
Nejmenší číslo mi vyšlo 21 a největší 100. Je alespoň jedno číslo správně? Děkuji

#
Žák
21 ano, ale u druhého ani nelze správně určit.

#
Jakmel-42
@Zuzii: Vyšlo mi to stejně. Ovšem nemohu to nijak ověřit, názory kolem nás se dost různí.

#
Žák
Min je 21.
Max nekonečno jak píše Stabil, jelikož jedno číslo můžete ve vnějším čtverci nahradit ,kterým koliv číslem a přitom splníte podmínky za pomoci 3 čísel.

#
Fida
Me to vyšlo min. 32 a max. 72

#
Ad
minimum 0
max. 14

#
Lyd
nejnižší 28, nejvyšší 100

#
Lyd
nejnižší prvočíslo 2

#
Idk
někdo nějaký řešení? nejnižší přirozené číslo je 1, že ano?

#
Šíny
Jako min. číslo bych dala 9 ---> 2,4,0,3
ale jestliže MO nebere nulu jako přirozené číslo, tak by mi vyšlo 12 ---> 2,4,3,3
U max. mám nekonečno

4 roky  2 Likes
#
Žák
jj

avatar








 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Související a podobné příklady:

  • Ozubené soukolí 3
    gears-3 Ozubené soukolí je sestavené ze tří ozubených kol. První má 165 zubů, druhé 132 zubů a třetí 231, přičemž druhé zapadá do prvního a třetí do druhého kola. První a třetí se nedotýká. Kolikrát za minutu budou všechna tři kola ve stejném vzájemném postavení
  • C–I–4 MO 2017
    nahoda Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
  • MO Z8-I-1 2018
    age Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
  • MO Z6–I–3 2018
    moz6 Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč
  • Z9-I-6 MO 2017
    olympics Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
  • MO B 2019 ukol 2
    olympics Přirozené číslo n má aspoň 73 dvojmístných dělitelů. Dokažte, že jedním z nich je číslo 60. Uveďte rovněž příklad čísla n, které má právě 73 dvojmístných dělitelů, včetně náležitého zdůvodnění.
  • Z9–I–1 2018 čísla
    hyperbola Najděte všechna kladná celá čísla x a y, pro která platí: 1/x + 1/y = 1/4
  • Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  • MO Z8-I-2 2012
    numbers Číslo X je nejmenší takové přirozené číslo, jehož polovina je dělitelná třemi, třetina dělitelná čtyřmi, čtvrtina dělitelná jedenácti a jeho polovina dává zbytek 5 po dělení sedmi. Najděte toto číslo.
  • Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  • Sklepy
    Spider-and-Fly V prvním sklepě je víc much než pavouků, ve druhém naopak. V každém sklepě měli mouchy a pavouci dohromady 100 nohou. Určete kolik mohlo být much a pavouků v prvním a kolik ve druhém sklepě. PS. Nám stačí, když napíšete kolik rěšení má tenhle úkol.
  • Z9–I–3 - 2017 kafemlýnky2
    robots Roboti Robert a Hubert skládají a rozebírají kafemlýnky. Přitom každý z nich kafemlýnek složí čtyřikrát rychleji, než jej sám rozebere. Když ráno přišli do dílny, několik kafemlýnků už tam bylo složeno. V 7:00 začal Hubert skládat a Robert rozebírat, přes
  • MO 2019 Z8–I–4
    olympics Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  • Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  • Z9 – I – 5 MO 2018
    kruhy_mo Adam a Eva vytvářeli dekorace z navzájem shodných bílých kruhů. Adam použil čtyři kruhy, které sestavil tak, že se každý dotýkal dvou jiných kruhů. Mezi ně pak vložil jiný kruh, který se dotýkal všech čtyř bílých kruhů, a ten vybarvil červeně. Eva použila
  • Pastýř
    ships Pastýř pásl ovce. Turisté se ho ptali, kolik jich má. Pastýř řekl: "Je jich méně než 500. Kdybych je seřadil do štvorradu tři by mi zůstaly. Kdyby do päťradu zůstali by mi čtyři a pokud do šesti radu, zůstane jejich 5. Mohu je však seřadit do sedm řady. K
  • MO C–I–1 2018
    numbers Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.