Matematická olympiáda - slovní úlohy a příklady

Úkoly MO nejsou lehké, ani pro dospělé lidi. Zároveň věříme, že správné řešení, které je zde publikované téměř na jeden klik poslouží jen na inspiraci. V reálném životě každý totiž řeší úkoly, které nikdo jiný před tím neřešil.
  
Nenechte se odradit, když neobjevíte hned řešení. Experimentujte, kreslete si, "hrajte se" s úlohou. Někdy pomůže podívat se do nějaké knížky, kde najdete podobné úkoly vyřešeny, jindy se může stát, že najednou o tři dny "z ničeho nic" na řešení přijdete.

Počet nalezených příkladů: 146

  • MO Z6-6-1
    kruhy_1 Do prázdných polí v následujícím obrázku doplňte celá čísla větší než 1 tak, aby v každém tmavším políčku byl součin čísel ze sousedních světlejších políček: Jaké je číslo je středu?
  • Cifra
    olympics_3 Jaké je poslední číslo 2016-té mocniny čísla 2017?
  • Rok 2018 jak číslo
    new_year Součin tří kladných čísel je 2018. Která jsou to čísla?
  • Bikvadratická
    eq2_6 Najděte největší přirozené číslo d, které má tu vlastnost, že pro libovolné přirozené číslo n je hodnota výrazu V(n)=n4+11n2−12 dělitelná číslem d.
  • MO C - 2017
    math_mo Najděte nejmenší čtyřmístné číslo abcd takové, že rozdíl (ab)2−(cd)2 je trojmístné číslo zapsané třemi stejnými číslicemi.
  • Z7-I-4 hvězdičky 4949
    hviezdicky_mo Napište namísto hvězdiček, aby následující zápis součinu dvou čísel byl platný: ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 9 4 9 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗
  • Hvězdičková rovnice
    numbers_37 Napište namísto hvězdiček cifry tak, aby součet vyplněných cifer byl lichý a aby platila uvedená rovnost: 42 · ∗8 = 2 ∗∗∗
  • Z bodu
    parcela_2 Z bodu A do B je to 16 km z bodu C do B je to 20 km z bodu C do D je to 19 km kolik kilometru to je z bodu D do bodu A
  • C – I – 6 MO 2018
    numbers_49 Najděte všechna trojmístná čísla n s třemi různými nenulovými číslicemi, která jsou dělitelná součtem všech tří dvojmístných čísel, jež dostaneme, když v původním čísle vyškrtneme vždy jednu číslici.
  • Mnohočleny - trojčleny
    eq2_5 Nalezněte všechny trojčleny ? s celočíselnými koeficienty a, b a c, pro která platí P(1) < P(2) < P(3) a zároveň ((P(1)) 2 + ((P(2)) 2 + ((P(3)) 2 = 22.
  • Prvočísla - 6c
    numberline_1 Najít všechna šesticiferná prvočísla, která obsahují každou z číslic 1,2,4,5,7 a 8 právě jednou. Kolik jich je?
  • Až bude
    age_7 Až bude Bedřichovi tolik let co je Adamovi dnes, bude mít Adam 14 let. Kdyz bude Adamovi tolik let kolik ma Bedřich dnes byli Bedřichovi dva roky. Kolik let je dnes Adamovi a Bedřichovi?
  • Veverky
    Veverka Tři kamarádky veverky spolu vyrazily na sběr lískových oříšků. Zrzečka jich našla dvakrát víc než Pizizubka a Ouška dokonce třikrát víc než Pizizubka. Cestou domů si povídaly a přitom louskaly a jedly své oříšky. Pizizubka snědla polovinu všech oříšků, kt
  • Dlaždice MO-Z5-3-66
    stvorce Na obrázku je čtvercová dlaždice se stranou délky 10 dm, která je složena ze čtyř shodných obdélníků a malého čtverce. Obvod malého čtverce je pětkrát menší než obvod celé dlaždice. Určete rozměry obdélníků.
  • Z9–I–3 MO 2019
    reciprocal Pro která celá čísla x je podíl (x+11)/(x+7) celým číslem? Najděte všechna řešení.
  • Hodinář
    clock-night-schr Starý hodinář má ve své sbírce zvláštní digitální budík, který zvoní vždy, když součet cifer, který budík ukazuje, se rovná číslu 21. Zjisti, ve kterých časech bude budík zvonit. Jaký je jejich počet? Vypiš všechny možnosti ...
  • Pyramida Z8–I–6
    pyramida_mo Každá cihlička následující pyramidy obsahuje jedno číslo. Kdykoli to je možné, je číslo v každé cihličce nejmenším společným násobkem čísel ze dvou cihliček ležících přímo na ní. Které číslo může být v nejspodnější cihličce? Určete všechny možnosti.
  • Z5–I–6 MO 2017
    prime_1 Na stole leželo osm kartiček s čísly 2, 3, 5, 7, 11, 13, 17, 19. Ferda si vybral tři kartičky. Sečetl na nich napsaná čísla a zjistil, že jejich součet je o 1 větší než součet čísel na zbylých kartičkách. Které kartičky mohly zůstat na stole? Určete všech
  • MO Z6–I–1 - 2017 - Anička
    numbs_9 Anička a Blanka si napsaly každá jedno dvojmístné číslo, které začínalo sedmičkou. Dívky si zvolily různá čísla. Poté každá mezi obě číslice vložila nulu, takže jim vzniklo trojmístné číslo. Od něj každá odečetla svoje původní dvojmístné číslo. Výsledek j
  • Lichoběžník MO-5-Z8
    lichobeznik_mo_z8 Lichoběžník ABCD je úsečkou CE rozdělen na trojúhelník a rovnoběžník, viz obrázek. Bod F je středem úsečky CE, přímka DF prochází středem úsečky BE a obsah trojúhelníku CDE je 3 cm2. Určete obsah lichoběžníku ABCD.

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.



Viz také více informacií na Wikipedii.