Matematická olympiáda - slovní úlohy a příklady

Úkoly MO nejsou lehké, ani pro dospělé lidi. Zároveň věříme, že správné řešení, které je zde publikované téměř na jeden klik poslouží jen na inspiraci. V reálném životě každý totiž řeší úkoly, které nikdo jiný před tím neřešil.
  
Nenechte se odradit, když neobjevíte hned řešení. Experimentujte, kreslete si, "hrajte se" s úlohou. Někdy pomůže podívat se do nějaké knížky, kde najdete podobné úkoly vyřešeny, jindy se může stát, že najednou o tři dny "z ničeho nic" na řešení přijdete.

  1. Dědo MO Z5–I–5 2019
    jablone Dědeček má v zahradě tři jabloně a na nich celkem 39 jablek. Jablka rostou jen na osmi větvích: na jedné jabloni plodí dvě větve, na dvou jabloních plodí po třech větvích. Na různých větvích jsou různé počty jablek, ale na každé jabloni je stejný počet ja
  2. MO Z8-I-2 2012
    numbers Číslo X je nejmenší takové přirozené číslo, jehož polovina je dělitelná třemi, třetina dělitelná čtyřmi, čtvrtina dělitelná jedenácti a jeho polovina dává zbytek 5 po dělení sedmi. Najděte toto číslo.
  3. MO Z7–I–3 2019
    olympics Roman má rád kouzla a matematiku. Naposled kouzlil s trojmístnými nebo čtyřmístnými čísly takto: • z daného čísla vytvořil dvě nová čísla tak, že ho rozdělil mezi číslicemi na místě stovek a desítek (např. Z čísla 581 by dostal 5 a 81), • nová čísla sečet
  4. MO 2019 Z9–I–5
    olympics Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vy
  5. Z8–I–5 MO 2019
    mo_z8_trojuhelniky Pro osm navzájem různých bodů jako na obrázku platí, že body C, D, E leží na přímce rovnoběžné s přímkou AB, F je středem úsečky AD, G je středem úsečky AC a H je průsečíkem přímek AC a BE. Obsah trojúhelníku BCG je 12 cm2 a obsah čtyřúhelníku DFHG je 8
  6. MO 2019 Z8–I–4
    olympics_1 Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  7. Richardove čísla Z8-I-2 2019
    numbers2 Richard si pohrával s dvěma pětimístnými čísly. Každé sestávalo z navzájem různých číslic, které u jednoho byly všechny liché a u druhého všechny sudé. Po chvíli zjistil, že součet těchto dvou čísel začíná dvojčíslím 11 a končí číslem 1 a že jejich rozdíl
  8. Z8–I–3 MO 2019
    bus27 Vendelín bydlí mezi dvěma zastávkami autobusu, a to ve třech osminách jejich vzdálenosti. Dnes vyrazil z domu a zjistil, že ať by utíkal k jedné, nebo druhé zastávce, dorazil by na zastávku současně s autobusem. Průměrná rychlost autobusu je 60 km/h. Ja
  9. Gramáže v kuchařce (Matik)
    vahy2 V kuchařce od Matěje Matemakaka se psalo: největší společný dělitel gramáže mouky a gramáže cukru je 15, největší společný dělitel gramáže cukru a gramáže citronové kůry je 6, součin gramáže cukru a gramáže citrónové kůry je 1800, nejmenší společný násobe
  10. Z6 – I – 6 MO 2019
    numbers_1 Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Mezi tr
  11. Prvočísla - 6c
    numberline_1 Najít všechna šesticiferná prvočísla, která obsahují každou z číslic 1,2,4,5,7 a 8 právě jednou. Kolik jich je?
  12. Dva přátele
    aircraft-02_14 Dva přátele cestující letadlem měli dohromady 35 kg zavazadel. Za nadváhu při přepravě zaplatil jeden 72 korun a druhý 108 korun. Kdyby za všechna zavazadla platil jen jeden, stálo by ho to 300 korun. Jakou hmotnost zavazadel měl každý z nich, kolik kilog
  13. Z9 – I – 1 MO 2019
    oriesky Ondra, Matěj a Kuba se vracejí ze sbírání ořechů, celkem jich mají 120. Matěj si stěžuje, že Ondra má jako vždy nejvíc. Otec přikáže Ondrovi, aby přisypal ze svého Matějovi tak, aby mu počet ořechů zdvojnásobil. Nyní si stěžuje Kuba, že nejvíc má Matěj. N
  14. V Kocourkově - Z8-I-6 2019 MO
    mince_1 V Kocourkově používají mince pouze se dvěma hodnotami, které jsou vyjádřeny v kocourkovských korunách kladnými celými čísly. Pomocí dostatečného množství takových mincí je možné zaplatit jakoukoli celočíselnou částku větší než 53 kocourkovských korun, a t
  15. Z5–I–4 MO 2019
    2019 Vojta začal vypisovat do sešitu číslo letošního školního roku 2019202020192020. . . A tak pokračoval pořád dál. Když napsal 2020 číslic, přestalo ho to bavit. Kolik tak napsal dvojek?
  16. MO B 2019 ukol 2
    olympics Přirozené číslo n má aspoň 73 dvojmístných dělitelů. Dokažte, že jedním z nich je číslo 60. Uveďte rovněž příklad čísla n, které má právě 73 dvojmístných dělitelů, včetně náležitého zdůvodnění.
  17. Z8 – I – 1 MO 2019
    koso_konstrukce Sestrojte kosočtverec ABCD tak, aby jeho úhlopříčka BD měla velikost 8 cm a vzdálenost vrcholu B od primky AD byla 5 cm. Určete všechny možnosti
  18. Z9–I–1 2018 čísla
    hyperbola_1 Najděte všechna kladná celá čísla x a y, pro která platí: 1/x + 1/y = 1/4
  19. MO Z6–I–3 2018
    moz6 Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč
  20. Z9 – I – 2 MO 2018
    equliateral V rovnostranném trojúhelníku ABC je K středem strany AB, bod L leží v třetině strany BC blíže bodu C a bod M leží v třetině strany AC blíže bodu A. Určete, jakou část obsahu trojúhelníku ABC zabírá trojúhelník KLM.

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož ji a my Ti ji zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.
Jde o to že chceme pomáhat, ale chodí nám upozornění od organizátorů těchto soutěží, že pomáháme řešitelem podvádět. My jsme se snažili jistit vás jako horolezci, nikoliv táhnout lanem na vrchol. Je pravda že hotové řešení je již příliš velká pomoc.

Správné řešení soutěžních úloh se dozvíte po skončení daného kola ...



Viz také více informacií na Wikipedii.