Matematická olympiáda - slovné úlohy a príklady

Úlohy MO nie sú ľahké, ani pre dospelých ľudí. Zároveň veríme, že správne riešenie, ktoré je tu publikované takmer na jeden klik poslúži na len inšpiráciu. V reálnom živote každý totiž rieši úlohy, ktoré nikto iný pred tým neriešil.

Nenechajte sa odradiť, keď neobjavíte hneď riešenie. Experimentujte, kreslite si, ”hrajte sa“ s úlohou. Niekedy pomôže pozrieť sa do nejakej knižky, kde nájdete podobné úlohy vyriešené, inokedy sa môže stať, že zrazu o tri dni ”z ničoho nič“ na riešenie prídete.

  1. MO 2019 Z8–I–4
    olympics_1 Pre päticu celých čísel platí, že keď k prvému pripočítame jednotku, druhé umocníme na druhú, od tretieho odčítame trojku, štvrté vynásobíme štyrmi a piate vydelíme piatimi, dostaneme zakaždým ten istý výsledok. Nájdite všetky také pätice čísel, ktorých sú
  2. Z5–I–4 MO 2019
    2019 Vojto začal vypisovať do zošita číslo terajšieho školského roku 2019202020192020. . . A tak pokračoval stále ďalej. Keď napísal 2020 cifier, prestalo ho to baviť. Koľko tak napísal dvojok?
  3. MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami..
  4. Z8–I–3 MO 2019
    bus27 Vendelín býva medzi dvoma zastávkami autobusu, a to v troch osminách ich vzdialenosti. Dnes vyrazil z domu a zistil, že či by utekal k jednej, alebo druhej zastávke, dorazil by na zastávku súčasne s autobusom. Priemerná rýchlosť autobusu je 60 km/h. Akou
  5. Z9 – I – 1 MO 2019
    oriesky Ondro, Maťo a Kubo sa vracajú zo zbierania orechov, dokopy ich majú 120. Maťo sa sťažuje, že Ondro má ako vždy najviac. Otec prikáže Ondrovi, aby prisypal zo svojho Maťovi tak, aby mu počet orechov zdvojnásobil. Teraz sa sťažuje Kubo, že najviac má Maťo. N
  6. MO 2019 Z6–I–6
    olympics Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka.
  7. Matik - KSM
    vahy2 V kuchárskej knihe od Mateja Matemakaka sa písalo: najväčší spoločný deliteľ gramáže múky a gramáže cukru je 15, najväčší spoločný deliteľ gramáže cukru a gramáže citrónovej kôry je 6, súčin gramáže cukru a gramáže citrónovej kôry je 1800, najmenší spoloč
  8. V Kocúrkove - Z8-I-6 2019 MO
    mince_1 V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne a
  9. Richardove čísla Z8-I-2 2019
    numbers2 Richard sa pohrával s dvoma päťcifernými číslami. Každé pozostávalo z navzájom rôznych cifier, ktoré pri jednom boli všetky nepárne a pri druhom všetky párne. Po chvíli zistil, že súčet týchto dvoch čísel začína dvojčíslím 11 a končí číslom 1 a že ich rozd
  10. MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  11. MO Z9 2019 domáce kolo
    triangles V trojuholníku ABC leží bod P v tretine úsečky AB (bližšie bodu A), bod R je v tretine úsečky PB (bližšie bodu P) a bod Q leží na úsečke BC tak, že uhly PCB a RQB sú zhodné. Určte pomer obsahov trojuholníkov ABC a PQC.
  12. MO C-I-3 2019
    numbers Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
  13. Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  14. MO B 2019 - uloha 2
    olympics Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
  15. Bazén
    praded Objem vody v mestskom bazéne s obdĺžnikovým dnom je 6998,4 hektolitrov. Propagačný leták uvádza, že keby sme chceli všetku vodu z bazéna preliať do pravidelného štvorbokého hranola s podstavnou hranou rovnajúcu sa priemernej hĺbke bazénu, musel by byť hran
  16. Z9-I-4
    numbers_30 Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a devä
  17. Z9–I–3
    ball_floating_water Julke sa zakotúľala loptička do bazéna a plávala vo vode. Jej najvyšší bod bol 2 cm nad hladinou. Priemer kružnice, ktorú vyznačila hladina vody na povrchu loptičky, bol 8 cm. Určite priemer Julkynej loptičky.
  18. Komora
    socks V komore, kde sa rozbilo svetlo a všetko z nej musíme brať naslepo, máme ponožky štyroch rôznych farieb. Ak si chceme byť istí, že vytiahneme aspoň dve biele ponožky, musíme ich z komory priniesť 28. Aby sme mali takú istotu pre sivé ponožky, musíme ich pr
  19. Pastevci
    ovce-miestami-baran Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?
  20. Z9–I–1
    ctverec_mo Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož ju a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.



Pozrite tiež informácií viac na Wikipédií.