Paper box

The hard rectangular paper has dimensions of 60 cm and 28 cm. We cut off the corners into equal squares, and the residue was bent to form an open box. How long must beside the squares be the largest volume of the box?

Correct answer:

c =  6 cm

Step-by-step explanation:

a=60 b=28 V=(a2c)(b2c)c V=(602c)(282c)c V=4c3176c2+1680c V=12c2352c+1680 V=0 12c2352c+1680=0  12c2352c+1680=0  p=12;q=352;r=1680 D=q24pr=35224121680=43264 D>0  c1,2=2pq±D=24352±43264 c1,2=24352±208 c1,2=14.666667±8.666667 c1=23.333333333 c2=6 c=c1=23.3333=6 a1=a2 c1=602 23.3333=34013.3333 b1=b2 c1=282 23.3333=35618.6667 V1=a1 b1 c1=13.3333 (18.6667) 23.33335807.4074 a2=a2 c2=602 6=48 b2=b2 c2=282 6=16 V2=a2 b2 c2=48 16 6=4608 V2>V1 c=c2=6=6 cm

Our quadratic equation calculator calculates it.




Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
Tip: Our volume units converter will help you convert volume units.

You need to know the following knowledge to solve this word math problem:

Related math problems and questions: