Triangle's centroid

In the triangle ABC the given lengths of its medians tc = 9, ta = 6. Let T be the intersection of the medians (triangle's centroid), and the point S is the center of the side BC. The magnitude of the CTS angle is 60°.
Calculate the length of the BC side to 2 decimal places.

Correct answer:

a =  10.58 cm

Step-by-step explanation:

tc=9 cm ta=6 cm CTS=60° rad=60° 180π =60° 1803.1415926 =1.0472=π/3  CT=1+22 tc=1+22 9=6 cm ST=1+21 ta=1+21 6=2 cm  x2 = CT2+ST2  2 CT ST cos CTS  x=CT2+ST22 CT ST cos(CTS)=62+222 6 2 cos1.0472=2 7 cm5.2915 cm  a=2 x=2 5.2915=4 7=10.58 cm

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
See also our right triangle calculator.
Cosine rule uses trigonometric SAS triangle calculator.
See also our trigonometric triangle calculator.

We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: