Math logic

There are 20 children in the group. Every two children have a different name. Alena and John are among them. How many ways can we choose eight children to be among the selected

A) was John
B) was John and Alena
C) at least one was Alena, John
D) maximum one was Alena, John?

Correct answer:

a =  50388
b =  18564
c =  75582
d =  196035840

Step-by-step explanation:

p1=7!=5040 a=1 19 18 17 16 15 14 13/p1=1 19 18 17 16 15 14 13/5040=50388
p2=6 5 4 3 2 1=720 b=1 1 18 17 16 15 14 13/p2=1 1 18 17 16 15 14 13/720=18564
p3=7 6 5 4 3 2 1 2=10080 c=3 19 18 17 16 15 14 13/p3=3 19 18 17 16 15 14 13/10080=75582
d=2 17 16 15 14 13 12 11=196035840



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Would you like to compute the count of combinations?

Related math problems and questions: